AD-ESO) HSk

Copy 4 of 112copies

D-A245 434 S | ~
\\ll‘l\\\m\\I\\l\ll\l\\\\l\lll\\\\\l\\H\I\ DTIC @

..‘3, - ' F P T ;‘
DEC 6 1Oé]
IDA PAPER P-2422 G c

ASSESSMENTS OF SELECTED
REAL-TIME COMPUTING TECHNOLOGIES

Karen D. Gordon
Kevin J. Rappoport

Dennis W. Fife, Task Leader

July 1991
=
Prepared for == wd
Strategic Defense Initiative Organization = |
=
=~
==
Approves for public relesse, ualisited distribution: 22 Octeber 1981. ;ﬁ_(\%

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

91 12 5 019 1DA Log No. HQ 90-035650

DEFINITIONS
{DA publishes the following documents to report the results of itz work.

Reports

Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody resuits of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
sigaificant economic implications. IDA Reparts are reviewed by outside panels of experts
10 essure their high quality and relevance to the problems studied, and they are relsassd
by the President of IDA.

Group Reports

Group Reports record the findings and resulits of IDA established working groups and
pansis composed of seaior individuals addressing major issues which otherwiss would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsibie for the project and others as seiscted by IDA to ensure their high quality and
reigvance to the problems studied, and are relsased by the President of IDA.

Papers

Papers, aiso authoritativa and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to snsure
that they meet the high standards expected of refereed papers in professiopnl journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the sponsors or the analysts (3) to record
substantive work done in quick reaction studiss, (b) to record the proceedings of
conferences and mestings, (c) 1o make available preliminary and tentative results of
analyses, (d) to record data developed in the courss of an investigstion, or (e) to forward
information that is essentially unanatyzed and unevalusted. The review of (DA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C for
the Department of Defenss. The publication of this IDA document does not indicate
endorssment by the Depariment of Defenss, nor shouid the contents be construed as
refiecting the official position of that Agency.

This Paper has besn roviewsd by IDA to sssure that it meets high standards of
thoroughness, objectivity, and appropriate analytical methodology and that the resulis,
conclusions and recommendations are .. operly supported by the material presented.

© 1991 Institwie for Defenss Analyses

The Government of the United States is granted an unlimited license to reproduce this
document.

) REPORT DOCUMENTATION PAGE a3 N 0704.0188

hour per the time for instructions, date sources,
mmmbum hdﬂdhml helslgll 3 u-&::m pr e

m Mb needed, and m and d‘ nrm‘ h‘
mmm,.mxmm' m&m.u' ?&mam‘ﬂwwmmm‘xm% e
1. AGENCY USE ONLY (Lsave blaok) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
> July 1991 Final
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS
Assessments of Selected Real-Time Computing Technologies MDA 903 89 C 0003
Task T-R2-597.2
6. AUTHOR(S)
> Karen D. Gordon, Kevin J. Rappoport
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. Pmrogum ORGANIZATION REPORT
Institute for Defense Analyses (IDA) IDA Paper P-2422
[] 1801 N. Beauregard St.
Alexandria, VA 22311-1772
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. sponsgqrnmw&monmc AGENCY
SDIO/ENA REPORT NUMB
Room 1E149, The Pentagon
[4 Washington. D.C. 20301-7100
11. SUPPLEMENTARY NOTES
®
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, unlimited distribution: 22 October 1991. 2A
[
13. ABSTRACT (Maxiomum 200 words)

Developing dependable software for large, complex, real-time systems is one of the major challenges now
facing the software industry. The software R&D community is responding to this challenge; numerous efforts
have been initiated on various aspects of real-time software development. In this paper, we review and
evaluate ongoing R&D efforts in light of the needs of strategic defense systems. We identify and discuss four
» recent developments that hold promise for facilitating the design and implementation of real-time software for

strategic defense systems: (1) rate monotonic scheduling theory, (2) real-time extensions to the IEEE Portable
Operating System Interface for Computer Environments (POSIX), (3) several distributed real-time operating
system prototypes, and (4) various methods for enhancing real-time system robustness by trading precision of
results for timeliness of results. We also point out an area of major concem to real-time software developers
and, in particular, to the SDIO: the lack of analytical methods for evaluating the performance of complex real-
time systems. We conclude with a series of recommendations on how the SDIO should follow up on the real-

® mneR&Dtoplcscovuedmthepaper
I‘Real Opemm s Portable Operating System Interface for Computer | 126 @0
time ystems; e g System ace for
® s‘ ; Rate Monotonic Scheduling Theory. 16. PRICE OODE

17.SBCURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500

Standerd 3
Prescribed by ANSI Sud. 239-18
298-102

IDA PAPER P-2422

ASSESSMENTS OF SELECTED

REAL-TIME COMPUTING TECHNOLOGIES

Karen D. Gordon
Kevin J. Rappoport

Dennis W. Fife, Task Leader

July 1991

- Approved for public release, wnlimited distridution: 22 October 1991.

INSTITUTE FOR DEFENSE ANALYSES |

Contract MDA 903 89 C 0003
Task T-R2-597.2

Acessslon Vor ““"J“'

NTI3 GRaag

Fric ta -
Uparia. o ed s .
Justifioat tor !
By j‘
| Distribuiion/ |

Availability Codes
vall amdfer

Dist Spesial

-\ l

PREFACE

This paper was prepared for the Strategic Defense Initiative Organization
(SDIO) in response to the requirement of Subtask Order T-R2-597.2, “SDIO Software
Technology Plan,” to review and evaluate current research related to developing software
for real-time systems. Its purpose is twofold: first, to identify research efforts that hold
promise for facilitating the development of real-time software for strategic defense sys-
tems; and second, to identify areas of concern that demand further research.

This paper was reviewed by the following members of the Institute for Defense
Analyses management and staff: Dr. Richard L. Wexelblat, Mr. W. T. Mayfield, Mr.
Stephen H. Edwards, Dr. Reginald N. Meeson, and Dr. James P. Pennell. The authors
thank the reviewers for their feedback on earlier drafts of this paper.

The authors of this paper also gratefully acknowledge the contributions of Mr.
James Baldo of the Institute for Defense Analyses, Dr. Lawrence W. Dowdy of Vander-
bilt University, Mr. William M. Corwin of Intel Corporation, and Dr. C. Douglass Locke
of IBM to published articles that are included as appendices of this paper.

TABLE OF CONTENTS

1.INTRODUCTION . . . ¢ « ¢« « « &

1.1 BACKGROUND

1.2 PURPOSE L] L] . L] L L L] L] * L4

13SCOPE . . . ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o
2. RATE MONOTONIC SCHEDULING THEORY
3. IEEE REAL-TIME EXTENSIONS TO POSIX

4. DISTRIBUTED REAL-TIME OPERATING SYSTEMR&D 15
4.1 BACKGROUND: DISTRIBUTED OPERATING SYS-
TEMS 15
4.1.1 Distinction between Dnstnbuted Operatmg Systems and Centrahzed
Operating Systems 16
4.1.2 Role of Distributed Operatmg Systems in Strateglc Defense Sys-
temis 16
4.2 SAMPLE OF ONGOING DISTRIBUTED REAL-TIME OPERATING
SYSTEMR&DEFFORTS ¢« ¢ ¢« ¢« ¢ o o« o o o & 17

5. METHODS FOR ENHANCING REAL-TIME SYSTEM ROBUSTNESS
BY TRADING PRECISIONFORTIMELINESS 25

O U W NN ==

51 EXAMPLE e e e e e e e e e 26

5.2 BACKUP APPROXIMATION METHOD e e e e e e e e s 26

5.3 IMPRECISE COMPUTATIONMETHOD 27
6. PERFORMANCE ANALYSIS OF APERIODIC REAL-TIME SYS-

TEMS L] . - . L4 L . L] L] L] L] L] L L] L] L] L] . . L LJ L . * 29
7 - RECOMNDA'HONS L L L . L] . . L L d L . . . L] L L] L] 33

REFERENCES * L L] L] L] * L] L] L] . L4 L4 L] L) *® * L] L] L L . 37

APPENDIX A - REAL-TIME OPERATING SYSTEMS: OVERVIEW OF
THESTATEOFTHEPRACTICE ¢« ¢« ¢« ¢« « o o« « « » A-l

APPENDIX B - OVERVIEW OF THE IEEE P1003.4 REALTIME EXTEN-
SION To msm . L] L] L] L] * L] . . L L[4 L] L] L L] L * L] Ld L] . B-l

vii

APPENDIX C - TRADING PRECISION FOR TIMELINESS: AN
APPROACH TO THE DEVELOPMENT OF ROBUST REAL-TIME SYS-
'IEMS L4 L] L] L] L] - L] L] - . L L4 * L L L]

APPENDIX D - SCHEDULING APERIODIC TASKS WITH HARD DEAD-
LINES IN A RATE MONOTONIC FRAMEWORK

viii

C-1

D-1

1. INTRODUCTION

The work reported herein was undertaken at the request of the Strategic Defense
Initiative Organization (SDIO). It represents a follow-up to the distributed operating sys-
tem technology assessment documented in the Institute for Defense Analyses (IDA)
paper Strategic Defense System Distributed Operating System R&D: Review and Recom-
mendations [Gordon and Linn 89]. During the course of conducting the distributed
operating system technology assessment, we concluded that real-time computing presents
challenges not only to the distributed operating systems that may be utilized in strategic
defense systems, but also to strategic defense system software in general.

1.1 BACKGROUND

The demands of real-time computing complicate each phase of the software life
cycle. The complicating factor is time. Real-time computing systems are distinguished by
the significance of the role that time and, in particular, timing constraints play in them.
Timing constraints are imposed by the environment in which the real-time computing sys-
tem exists. Typically, the environment consists of a larger controlled system (e.g., an
automobile, aircraft, ship, submarine, missile, hospital patient monitoring system, air
traffic control system, factory floor, nuclear power plant, etc.), as well as the physical
environment in which the controlled system exists. The real-time computing system is the
controlling element of the larger system. Failure to meet environment-imposed timing
constraints can have catastrophic consequences, such as loss of life, loss of the controlled
system, or failure of the mission of the controlled system.

In the premier issue of Real-Time Systems, the introductory editorial character-
izes real-time systems as that category of systems in which “the correctness of the system
depends not only on the logical results of computations but also on the time at which the
results are produced” {Stankovic 89, 6]. Thus, in real-time systems, timeliness is a first-
order system concern. Timing constraints must be taken into account explicitly through-
out the software development process. First, timing constraints must be identified. Then,
during the design and implementation phases of the life cycle, the timing constraints must
be addressed as real requirements—as real as the more traditional functional require-
ments. Likewise, the testing phase must be designed to assure timing correctness as well
as functional correctness. Furthermore, whenever modifications are made to a system,
during either development or maintenance phases, the impact of the modifications on

timing correctness must be considered.

Timing constraints must be taken into account by real-time systems themselves
during the operational phase of their life cycles. Their resource management can be nei-
ther fairness-driven nor efficiency-driven, as in interactive timesharing systems. Instead,
their resource management must be driven by the time constraints of the mission that the
real-time system is intended to perform. The timing constraints can be conveyed to the
system either explicitly through mechanisms such as deadlines, or implicitly, through
mechanisms such as priorities. Moreover, if a timing constraint such as a deadline is
missed or is in danger of being missed, it is helpful for the system to be able to recognize
the situation and invoke appropriate fault tolerance mechanisms.

The recent proliferation of real-time systems has increased interest in real-time
computing. Stankovic of the University of Massachusetts brought the issues of real-time
computing to the forefront through publication of his article, “Misconceptions About
Real-Time Computing: A Serious Problem for Next-Generation Systems” [Stanko-
vic 88]. It was, in fact, this article that prompted the SDIO to request IDA to further
investigate real-time computing technology. In the article, Stankovic defines real-time
computing, articulates some of its fundamental issues, and calls upon researchers, devel-
opers, and funding agencies to work together in establishing a scientific foundation for
real-time computing.

1.2 PURPOSE

The purpose of this paper is two-fold: first, to identify promising developments
that should be exploited by the SDIO, and second, to identify areas of concern that
should be addressed by the SDIO through increased research and development (R&D).

1.3 SCOPE

In keeping with its purpose, the scope of this paper is not focused a priori on a
specific issue in real-time computing. Instead, the scope is, in effect, defined by the activ-
ities of the real-time computing community on one hand, and by the real-time computing
requirements of strategic defense systems on the other hand.

However, certain specific topics are purposely excluded from the scope of this
investigation, since they are the subjects of other investigations being conducted by IDA
for the SDIO. These topics are (1) software engineering tools [Fife 87; Wheeler 90] and
(2) software testing and evaluation [Brykczynski 90; Youngblut 89] .

1.4 OUTLINE

Sections 2 through 5 of this paper report on four recent developments that hold
promise for meeting some of the challenging real-time computing requirements of strate-
gic defense systems:

e Rate monotonic scheduling theory

¢ IEEE real-time extensions to POSIX (Portable Operating System Interface for
Computer Environments)

¢ Distributed real-time operating system R&D

e Methods for enhancing real-time system robustness by trading precision for time-
liness

Section 6 identifies an area of major concern to real-time system developers and, in par-
ticular, to the SDIO:

o Lack of analytical methods for evaluating the performance of aperiodic real-time
systems.

Section 7 concludes the paper with a series of recommendations on how the SDIO should
follow up on each of the topics highlighted in this paper.

2. RATE MONOTONIC SCHEDULING THEORY

In general, real-time systems have been built through ad koc techniques, often at
inordinate expense. As systems become ever larger and more complex, a more disci-
plined approach becomes essential. Rate monotonic scheduling theory offers a disci-
plined approach for certain real-time systems—those that those can be developed in a
periodic framework.

The basic rate monotonic algorithm is an algorithm for scheduling periodic tasks
with hard deadlines. It dates back to 1973, when it was published by Liu and Layland
[Liu and Layland 73]. In recent years, it has become the basis of a whole body of
scheduling theory, developed in large part by researchers at Carnegie Mellon University
and the Software Engineering Institute (SEI). The evolving theory has made significant
progress toward accommodating aperiodic tasks, transient overload, and task synchroni-
zation.

The rate monotonic algorithm and the theory that has evolved around it offer
several important features: straightforward assignment of scheduling attributes, straight-
forward scheduler, low overhead, efficiency, predictability, adaptability, applicability to
Ada real-time systems, and extensibility. These features, which are elaborated in the fol-
lowing section, combine to make the rate monotonic algorithm the scheduling algorithm
of choice for periodic-based real-time systems.

Synopsis of the Rate Monotonic Scheduling Algorithm

Letr, ..., 7, be a set of m periodic tasks, with task r; having a period (or constant
interarrival time) of 7; and computation requirements of C;, i =1, ..., m. Each arrival
(i.e., occurrence) of task 7; initiates a period of length T; time units, during which it must
receive C; time units of computation. The end of the period represents the “hard dead-
line” of the arrival that initiated the period. It also coincides with the occurrence of the
next arrival, which marks the beginning of the next period. Since task r; requires C; time
units of computation every T; time units, its utilization of the processor is C;/T;. !

The rate monotonic algorithm is an optimal preemptive, static-priority-driven
uniprocessor scheduling algorithm for periodic tasks with hard deadlines as defined in the

1. The notation used here is based on the notation in [Liu and Layland 73).

5

previous paragraph.? As a preemptive, priority-driven algorithm, it ensures that the pro-
cessor is always executing the highest priority task in the processor’s ready queue (unless
of course the queue is empty, in which case the processor is idle). If a task of higher prior-
ity than the currently executing task joins the queue, then the currently executing task is
preempted, and the processor begins executing the newly arrived (higher priority) task.

As a static algorithm, the rate monotonic algorithm assigns priorities that are
determined prior to execution and remain fixed over time. In particular, it assigns static
priorities to tasks according to the lengths of their periods; tasks with shorter periods are
assigned higher priorities. Alternatively stated, tasks with higher arrival rates are
assigned higher priorities, making task priority a monotonically increasing function of
task arrival rate; hence the term ““rate monotonic.”

The rate monotonic algorithm was shown to be optimal within the class of
preemptive, static-priority-driven scheduling algorithms by Liu and Layland [Liu and
Layland 73). This means that no other algorithm of this class can schedule a set of
periodic tasks that cannot also be scheduled by the rate monotonic algorithm. In addition
to establishing optimality, Liu and Layland established a sufficient condition for the
schedulability of an arbitrary task set. The condition is that the total processor utilization
U of the task set is no more thanin 2, i.e.,

U='3(C/T;) <In2(=0.693)
inl
Thus, for any task set of any size whose total processor utilization is less than or equal to
In 2, the rate monctonic algorithm guarantees that all deadlines of the task set will be met.
Under more restrictive conditions, the total utilization can be higher.

The rate monotonic algorithm offers several important features:

a. Straightforward assignment of scheduling attributes: For the rate monotonic
algorithm, the scheduling attributes are priorities. Priorities are assigned
according to rate, with tasks having higher rates receiving higher priorities.

b. Straightforward scheduler: The basic rate monotonic algorithm requires only
preemptive, static-priority-driven scheduling, which is commonly offered by
operating systems. The rate monotonic algorithm is simply a method of
assigning the static priorities for this form of scheduling so that all deadlines
are met.

2. The earliest deadline and least slack time algorithms are optimal preemptive, dynamic-priority-driven
scheduling algorithms [Liu and Layland 73; Mok 83].

Low overhead: The rate monotonic algorithm is low overhead in the sense
that priority assignments are static; in other words, it is low overhead relative
to dynamic-priority-driven algorithms.

Efficiency: The rate monotonic algorithm is efficient in two senses. First, it is
optimal with respect to the class of static-priority-driven algorithms. Second,
it is viewed as being competitive with respect to the class of dynamic-priority-
driven algorithms. That is, the “overbuild” required to achieve a processor
utilization of no more than In 2 is generally regarded as being “acceptable.”

Predictability: The rate monotonic algorithm is predictable in the sense that
(under the specified conditions) deadlines are guaranteed to be met a priori.
The need for exhaustive testing is eliminated.

Adaptability to modifications in the application: Because of its straightfor-
ward assignment of scheduling attributes and its predictability, the rate mono-
tonic algorithm is tolerant of application modifications. That is, modifications
do not cause undue hardskip for application developers in terms of redesign-
ing time lines or retesting, as they would in the commonly used cyclic execu-
tive approach [Baker and Shaw 89] to real-time scheduling. Application
developers simply adjust the priority assignments to reflect any changes in the
ordering of task arrival rates and confirm that the total utilization remains
within specified bounds (e.g., less than in 2).

Applicability to Ada real-time systems: Through their Real-Time Scheduling
Theory in Ada Project, researchers at SEI have been working with Ada com-
piler vendors, real-time system developers, and government agencies to
explore the feasibility of utilizing rate monotonic scheduling theory in the
development of Ada real-time systems. Their conclusion thus far is as fol-
lows: “. .. it seems to be possible to support analytic scheduling algorithms
[i.e., rate monotonic algorithms] in Ada by using an enlightened interpreta-
tion of Ada’s scheduling rules together with a combination of runtime system
modifications and appropriate coding guidelines” [Sha and Goodenough 90,
59]. The article from which this quote is taken details the scheduling rule
interpretations, runtime system modifications, and coding guidelines that the
SEI researchers have found to facilitate the use of rate monotonic scheduling
theory in Ada real-time systems.

Extensibility: Perhaps the most important feature of the rate monotonic aigo-
rithm is its “extensibility.” It has proven to be amenable to a number of exten-
sions beyond traditional periodic task scheduling. For example, extensions

have been developed for dealing with aperiodic tasks [Sprunt 89], transient
overload [Sha 87], and task synchronization [Rajkumar 88; Sha 88].

Together, these features make the rate monotonic algorithm an efficient and effective
real-time scheduling algorithm for many applications.

3. IEEE REAL-TIME EXTENSIONS TO POSIX

A key component of a scientific foundation for real-time computing is a real-time
operating system, i.e., an operating system designed to meet the unique demands of real-
time computing. These demands include the following:

a. Mission-driven, application-directed resource management, rather than fair-
ness-driven or efficiency-driven resource management.

b. Timely (i.e., both fast and predictable) response to both external and internal
events.

c. Predictable (i.e, bounded) service times and overhead times.
d. Accurate time services that make time visible and accessible to applications.

Appendix A, “Real-Time Operating Systems: Overview of the State of the Practice,”
discusses these demands and how they are addressed by today’s real-time operating sys-
tems.

An effort is now underway to define an open system standard interface for real-
time operating systems. The effort is taking place under the POSIX (Portable Operating
System Interface for Computer Environments) umbrella. POSIX is the product of IEEE
Project P1003, which is sponsored by the Technical Committee on Operating Systems of
the IEEE Computer Society. P1003 consists of a family of working groups, one of which is
P1003.4, the Realtime Extensions Working Group. The POSIX working groups are
defining interface standards based on UNIX®. All of the POSIX standards are intended
to facilitate application portability at the source code level. While UNIX has become the
operating system of choice on a large number of widely varying hardware bases, its proli-
feration of versions in fact impedes application portability. The POSIX working groups
are chartered to remedy this situation by defining a standard operating system interface
and environment based on UNIX.

The first POSIX working group, P1003.1, has produced a standard known as
IEEE Std 1003.1-1990 (or POSIX.1 for short) in the IEEE standards community and as
ISO/IEC 9945-1:1990 in the international standards community [ISO90]. POSIX.1

® UNIX is a registered trademark of UNIX System Laboratories, Inc.

9

defines the interfaces to system services, including process management, signals, time
services, file management, pipes, file I/O, and terminal device management. POSIX.1,
in the UNIX tradition, is oriented toward the interactive time-sharing computing domain.
Using POSIX.1 as a baseline, the P1003.4 Working Group is extending application porta-
bility to the challenging real-time computing domain.

Also in the UNIX tradition, POSIX.1 and the draft standards being developed by
the P1003.4 Working Group are written in terms of C language bindings. However, there
is ongoing work within IEEE Project P1003 to extend the POSIX standards to other lan-
guages, including Ada. The P1003.5 Working Group has produced a draft standard
[IEEE 90a] that defines an Ada binding to POSIX.1. The draft standard is now in the
ballot resolution process. Next, the P1003.5 Working Group plans to develop Ada bind-
ings to the real-time extensions defined by the P1003.4 Working Group.3

The P1003.4 Working Group has achieved a broad base of participation and sup-
port. It includes over 175 individuals, representing over 70 organizations, including Intel,
IBM, AT&T, DEC, General Motors, Hewlett-Packard, Motorola, U.S. Navy, NASA,
Sun Microsystems, and Unisys. Moreover, the P1003.4 Working Group has done an
effective job of capturing the best of the state of the practice in real-time operating sys-
tems. Once accepted as standards, the P1003.4 Realtime Extension for Portable Operat-
ing Systems [IEEE 89] and the P1003.4a Threads Extension for Portable Operating Sys-
tems [IEEE 90b] are expected to become both widely available and widely utilized.

Already, POSIX has been adopted by the National Institute of Standards and
Technology (NIST) as a key component of its Applications Portability Profile (APP)
[NIST 90}, and by the Navy’s Next Generation Computer Resources (NGCR) Program as
a baseline on which to build its operating system interface standard [OSSWG 90]. Fur-
thermore, POSIX has been selected for use in some specific large-scale systems, including
the Space Station Freedom [Kovsky 90] and the Worldwide Military Command and Con-
trol System (WWMCCS) Automated Data Processing (ADP) System [DCA 89, Appen-
dix R].

The POSIX standards—in particular, the two draft standards being formulated by
Working Group P1003.4—hold promise for facilitating the development of strategic
defense systems for two main reasons:

a. First, the two draft standards of Working Group P1003.4, when combined,
form a reasonable competitor to other state-of-the-practice real-time

3. Professor Ted Baker of Florida State University has prepared an Ada binding to an earlier draft of
P1003.4 [Baker 90]. Presumably, his binding will be used as a basis for the P1003.5 Working Group effort
to produce a draft standard Ada binding to the POSIX real-time extensions.

10

operating system interfaces.

Second, many benefits can be accrued from the adoption of open system stan-
dards, including (1) connectivity and interoperability, (2) portability of pro-
grams, data, and people, including programmers, system administrators, net-
work managers, operators, and users, (3) protection of software investment,
which is a byproduct of portability, (4) and encouragement of commercial, off-
the-shelf (COTS) acquisitions, with their attendant advantages in terms of
“timeliness, cost, reliability, completeness of documentation, and training”
[DSB 87, 3].

Synopsis of the P1003.4 and P1003.4a Draft Standards

To date, Working Group P1003.4 has prepared two draft standards. The P1003.4
draft standard defines application interfaces in ten functional areas, while the P1003.4a
draft standard defines interfaces in an eleventh area——threads (i.e., lightweight
processes). Following are brief descriptions of the interfaces in the eleven areas:

a.

Timers: The P1003.4 draft standard defines interfaces to system-wide timers
and to per-process interval timers. Through these interfaces, it makes time
visible to processes, and it enable processes to schedule events in a variety of
useful ways, including periodically. The data structure that is used by these
interfaces to represent time provides for nanosecond resolution.

Priority Scheduling: The P1003.4 Working Group views preemptive, dynamic
priority-driven scheduling as being fundamental in real-time systems. The
P1003.4 draft standard defines two variants of preemptive, dynamic-priority-
driven scheduling.* The variants are distinguished by the way in which
processes of equal priority are scheduled. In the first variant, ready processes
of equal priority are scheduled according to a first-in-first-out (FIFO) policy.
In the second variant, ready processes of equal priority are scheduled accord-
ing to a round-robin (RR) policy, with a specified time slice.

Shared Memory: The P1003.4 Working Group views the shared memory
paradigm as being an important, traditional, high-performance mechanism
for interprocess communication in real-time systems. The P1003.4 draft stan-
dard enables shared memory objects to be mapped into a process’s virtual
address space. Semaphores are envisioned as a mechanism for synchronizing
access to shared memory.

4. It should be noted that preemptive, priority-driven scheduling, as defined in the P1003.4 draft standard,
is fundamental to the application of rate monotonic scheduling theory.

11

Real-time Files: The P1003.4 Working Group views the capability of perform-
ing I/O operations with deterministic high performance as being crucial in
real-time systems. It recognizes that contiguous files are a traditional mecha-
nism for providing deterministic high-performance I/O, since most real-time
systems utilize rotating magnetic disks as their file storage media. However,
rather than providing a specific interface to contiguous files, it provides a
more general interface to “real-time files.” The approach taken to real-time
files is to make some critical performance-related aspects of the operating sys-
tem’s implementation of files and I/0 not only application visible but also to
some extent application controllable. In particular, an application program
can offer ‘“hints” relating to characteristics of the application, which the
operating system can take into account in making its resource management
decisions.

Semaphores: The P1003.4 draft standard adopts the binary semaphore as the
basic means of process synchronization. It notes that the binary semaphore is
a “minimal” synchronization mechanism and that other mechanisms such as
counting semaphores and monitors can be implemented on top of the binary
semaphore.

Interprocess Communication Message Passing: The P1003.4 Working Group
views the capability of passing messages with both deterministic and high per-
formance as being crucial in real-time systems. The P1003.4 draft standard
supports message passing as a form of interprocess communication. It pro-
vides for synchronous and asynchronous message transmission and receipt,
prioritized messages, and multicast communication.

Asynchronous Event Notification: The P1003.4 Werking Group recognizes
the importance of asynchronous event notification. Moreover, it recognizes
the following shortcomings of the POSIX.1 signal facilities as a mechanism for
asynchronous event aotification in real-time systems: (1) signals do not
queue, so if two arrive before the first is handled, then the first will be lost, (2)
signals cannot pass data, so they cannot readily indicate specific sources of
events or errors, and (3) the number of possible user-defined signals is insuffi-
cient for many applications. The P1003.4 draft standard strives to overcome
these deficiencies and to define a general-purpose, uniform, reliable interface
that has both deterministic and high performance.

Process Memory Locking: The P1003.4 draft standard supports the notion
that a process should be able to lock its address space, or specified regions

12

thereof, into memory. Such a capability is viewed as being crucial to deter-
ministic high performance.

Asynchronous 1/0: The P1003.4 draft standard provides a capability to per-
form 1/0O operations asynchronously. The motivation is to allow processes to
perform multiple I/O operations concurrently with computations on I/0 data.

Synchronized 1/0O: The P1003.4 Working Group recognizes that some applica-
tions, such as database applications, may require assurance of 1/O comple-
tion. The P1003.4 draft standard refers to I/O that is to be done with assur-
ance of completion as “synchronized 1/0O.”

Threads: The P1003.4 Working Group recognizes that, for many applica-
tions, a fine-grained concurrency model provides a more robust paradigm for
time-critical processing than the POSIX.1 process model. Such facilities,
called lightweight processes or threads [Cooper and Draves 87; McJones and
Swart 87], allow concurrency of portions of the application to be defined
within a POSIX process, allowing such concurrent functions to share memory
and other resources. The thread mechanism is particularly important in
shared memory parallel processors and for Ada programs using the Ada task-
ing facility.

These interfaces are described in more detail in Appendix B, “Overview of the IEEE
P1003.4 Realtime Extension to POSIX.”S,

In regard to the real-time computing demands identified at the beginning of this
section, the interfaces defined in the P1003.4 and P1003.4a draft standards offer the fol-
lowing services and features:

a.

Mission-driven, application-directed resource management: The P1003.4/.4a
draft standards offer (1) preemptive, dynamic priority-driven scheduling,
(2) process memory locking, (3) real-time files, (4) asynchronous I/O, and
(5) synchronized I/0. Moreover, resolution of resource contention is consis-
tently accomplished not at the discretion of the operating system, but at the
direction of the application, through application-specified attributes such as
process priority.

5. The article reproduced in Appendix B was published in early 1990. At the time that it was prepared for
publication, the threads-related interfaces were a part of the P1003.4 draft standard. However, before
the P1003.4 draft standard (Draft 9, December 1, 1989) was distributed for balloting, the threads-related
interfaces were extracted; they were put into a new draft standard—P1003.4a—and then further

developed during the course of the year. Draft 5 of P1003.4a (December 7, 1990) was distributed for
balloting in January 1991.

13

For example, in addition to supporting preemptive, dynamic priority-driven
scheduling for resolution of processor contention, the draft standard makes
the following provisions: (1) processes blocked at semaphores are dequeued
in priority order, (2) messages have a fype field that can be used to establish
priorities for message delivery, (3) events are grouped into event classes that
can be used to establish priorities for asynchronous event notification delivery,
and (4) asynchronous I/O operations can be assigned priorities.

Optional synchronization (i.e., process blocking) is offered consistently
throughout the P1003.4/.4a draft standards. Thatis, a process can choose not
to block when invoking an operation that might incur blocking. A conspicuous
example is asynchronous I/O. Other examples include asynchronous message
sending, asynchronous message receiving, conditional synchronous message
receiving, and conditional invocation of semaphore operations.

b. Timely response to events: To support this, the P1003.4/.4a draft standards
offer (1) high-performance interprocess communication in the form of shared
memory and semaphores, as well as in the form of message passing, including
a provision for optimized delivery of very short messages (i.e., a pointer’s
worth of information), (2) reliable, high-performance asynchronous event
notification, and (3) threads (also known as lightweight processes).

c. Predictability of service times and overhead times: The P1003.4 Working
Group philosophy here is to define metrics for each of its interfaces and to
require vendors to report the values of the metrics. Thus, standard metrics
are defined, but standard values are not. In addition, the asynchronous invo-
cations and conditional invocations described above (in item a) enhance the
predictability of an application’s performance.

d. Time services: The P1003.4/.4a draft standards provide interfaces to fine-res-
olution timers that make time visible to processes and enable processes to
schedule events in a variety of useful ways, including periodically.

Through these services and features, the P1003.4/.4a real-time extensions to POSIX can
support aperiodic applicativas, as well as priority-driven periodic applications, such as
those developed according to rate monotonic scheduling theory.

14

4. DISTRIBUTED REAL-TIME OPERATING SYSTEM R&D

In this section, the focus remains on real-time operating systems, but it shifts from
the state of the practice, as represented by the POSIX P1003.4/.4a open system stan-
dards, to the state of the art, as represented by several ongoing R&D efforts on distri-
buted real-time operating systems.

Distributed real-time operating systems strive to meet the objectives of both dis-
tributed operating systems and real-time operating systems. They are designed to support
real-time computing on a platform comprising multiple computers interconnected by a
high-performance network. Distributed real-time operating systems are becoming
increasingly important because real-time computing systems are increasingly being imple-
mented as networks of computers.

While the POSIX P1003.4 Working Group has been careful not to preclude distri-
buted system realizations of the P1003.4/.4a interfaces, it has not yet attempted to pro-
vide full and direct support for such implementations. In the future, however, the POSIX
P1003.4 Working Group may choose to enhance their draft standards with more direct
support for distributed computing. The primary source of ideas for such support would be
the ongoing R&D on distributed real-time operating systems.

In addition to support for distributed computing, most cusrent real-time operating
system R&D prototypes incorporate new resource management approaches, which deal
with time and timing constraints explicitly (versus implicitly, for example, through priori-
ties). Many current prototypes also incorporate new fault tolerance mechanisms. The
concepts being explored in these prototypes hold promise for meeting some of the difficult
problems encountered in the development of large, complex, real-time systems, which
are epitomized by strategic defense systems.

4.1 BACKGROUND: DISTRIBUTED OPERATING SYSTEMS

Section 3 characterized real-time operating systems by identifying some of their
unique services and features. This subsection characterizes distributed operating systems
by distinguishing them from conventional centralized operating systems. It then goes on
to discuss the potential of distributed operating systems for meeting some strategic
defense system requirements.

15

4.1.1 Distinction between Distributed Operating Systems and Centralized Operat-
ing Systems

Both centralized operating systems and distributed operating systems are
responsible for performing two basic functions: (1) managing ‘“system resources” and
(2) providing an effective “system interface” for users and applications. The difference
between centralized operating systems and distributed operating systems lies in what
constitutes the “system’ on whose behalf the operating system is performing the func-
tions. In the case of a distributed operating system, the “system” being served is really
a “system of interconnected systems.” The interconnection is typically achieved via
local area network (LAN) technology. What the distributed operating system contrib-
utes is further “unification”: it establishes one unified system out of many intercon-
nected constituent systems.

To create a single-system illusion, a distributed operating system must, in
effect, make the network that interconnects the constituent systems transparent; hence,
distributed operating systems are said to offer “network transparency.” The trans-
parency manifests itself in a number of ways, for example, global user identification, glo-
bal object naming, and location-independent interprocess communication.

A distributed operating system manages and controls constituent systems by run-
ning on each constituent system. Typically, a distributed operating system is structured
as a kernel and a group of servers. The kernel, which implements some abstractions
for processes and interprocess communication, resides and executes at each constitu-
ent system. The servers, which implement conventional operating system services such
as afile service, can then run at only selected sites, according to the needs of the spe-
cific users or applications being served by the distributed system.

4.1.2 Role of Distributed Operating Systems in Strategic Defense Systems

Strategic defense systems and their development and maintenance systems will
have complex architectures. They will exist on geographically and spatially distributed
sites or platforms. A platform may contain one or more networks of processors (unipro-
cessors or multiprocessors).

Clearly, communication between processors is essential at many levels: between
processors in a multiprocessor or parallel processor system, between systems on a LAN,
between systems on wide area networks. Also, coordination of the processing activities is
essential. Communication and coordination can be achieved in various ways. For
example, in keeping with today’s state of the practice, each system could have its own
centralized operating system; communication could be achieved through standard

16

communication network protocols, and coordination (that might otherwise be provided
by a distributed operating system) could be achieved by application programs.

Alternatively, today’s state-of-the-art distributed operating systems could poten-
tially be utilized to meet some communication and coordination requirements, especially
at the level of communication and coordination among systems interconnected by a
LAN. In particular, real-time distributed operating systems could be utilized in strategic
defense systems, and general-purpose distributed operating systems could be utilized in
SDIO development and maintenance systems.

By managing resources in a unified manner, a distributed operating system
would offer some notable advantages: (1) the possibility of load distribution—shifting
workload from heavily utilized processing nodes to lightly utilized nodes, (2) the possi-
bility of parallel execution—executing (appropriately structured) applications on multi-
ple processing nodes in parallel—thus aggregating the power of multiple small systems
into a larger total system useful for some applications, and (3) the possibility of enhanced
reliability and fault tolerance, through fault containment (by isolating faults within indi-
vidual constituent systems) and fault recovery (by using constituent systems as redun-
dant components). By further providing a unified system interface, a distributed operat-
ing system would relieve programmers and application programs from some of the com-
munication and coordination burden—just as any operating system relieves both pro-
grammers and programs from performing many common chores.

4.2 SAMPLE OF ONGOING DISTRIBUTED REAL-TIME OPERATING SYS-
TEM R&D EFFORTS

At this point, it is too early to single out any specific distributed real-time operat-
ing system R&D effort as being the solution to the real-time problems faced by strategic
defense systems. It is for this reason that the “promising development” cited in this
paper is the collective work of the real-time operating system R&D community.

In September 1989, a Workshop on Operating Systems for Mission Critical Com-
puting was held at the University of Maryland.® Although the organizers of the Workshop
solicited papers on a number of topics, including reliability, fault tolerance, and security,
the Workshop was dominated by real-time interests. Over two-thirds of the papers
focused on real-time issues. Most current R&D efforts on real-time operating systems
were in fact represented at the Workshop. Below, we offer brief summaries of several dis-
tributed real-time operating systems discussed at the Workshop. For further explanation

6. This Workshop was jointly sponsored by the Office of Naval Technology, the Office of Naval Research,
the Space and Naval Warfare Systems Command, the University of Maryland Department of Computer
Science and Institute for Advanced Computer Studies, and the Institute for Defense Analyses.

17

and details, the reader is referred to the proceedings of the Workshop [UOM 89].
Alpha (E. Douglas Jensen, Concurrent Computer Corporation)

Alpha is a distributed operating system designed to support mission-critical com-
puting in large, complex, distributed systems. It is intended to embody mechanisms and
policies to facilitate and enhance real-time responsiveness, reliability, fault tolerance,
and security. With respect to real-time responsiveness, the Alpha approach is to manage
resources according to application-specified timing constraints and semantic importance
values on a system-wide best-effort basis. With respect to reliability and fault tolerance,
the Alpha approach is to implement mechanisms for replication and atomic transaction
features at the kernel level, and to implement policies at higher levels. With respect to
security, the Alpha approach is to utilize capabilities for naming and protection. Alpha is
object based. The conventional process abstraction is decomposed into two components:
(1) a storage component—the object (essentially an instance of an abstract data type),
and (2) a processing component—the thread. Threads move through objects via opera-
tion invocations.

ARTS (Hideyuki Tokuda, Carnegie Mellon University)

ARTS is a distributed real-time operating system implemented as part of Carne-
gie Mellon University’s Advanced Real-time Technology (ART) project. It is designed
to provide system developers and users an analyzable, predictable, reliable, real-time
computing environment. ARTS is object based. Its objects can have worst-case execu-
tion times (i.e., time fence values) and timing-violation exception-handling routines
assigned to their operations. Its threads can have scheduling attributes, such as semantic
importance values and timing constraints, associated with them. When a real-time
thread invokes an operation, a time fence protocol is used to determine whether the
thread can meet its timing constraints on the operation. ARTS implements an Integrated
Time Driven Scheduler (ITDS), which adheres to the principle of policy/mechanism sep-
aration, thus enabling a wide variety of scheduling policies to be supported. The ART
project has produced two window-based tools: (1) Scheduler 1-2-3, a schedulability
analyzer, and (2) Advanced Real-time Monitor (ARM), a monitor/debugger that presents
a visual image of runtime behavior. Additional topics being explored in the ART proj-
ect’s testbed include real-time communication and real-time data management.

18

CHAOS-ART (Karsten Schwan, Georgia Institute of Technology)

CHAOS-ART (Concurrent Hierarchical Adaptable Object System supporting
Atomic Real-time Transactions) is a distributed real-time operating system designed to
support adaptive hard real-time applications. The particular application that motivated
its development is the Adaptive Suspension Vehicle, Ohio State University’s six-legged
walking machine. In the design of CHAOS-ART, attention has been focused on the
interaction that occurs between the subsystems of a real-time system. The contention of
the CHAOS-ART developers is that the interaction should reflect the interaction that
occurs between the real-world entities represented by the subsystems. Since the form of
interaction between real-world entities can vary, CHAOS-ART provides a variety of
communication and synchronization mechanisms. CHAOS-ART is object based, so real-
world entities are represented as objects, which interact via operation invocations. Invo-
cations can be periodic or aperiodic, and they can have real-time attributes such as
delays, deadlines, and criticalness associated with them. At a higher level, CHAQS-
ART provides a mechanism referred to as an atomic real-time transaction. Such a trans-
action is a set of real-time invocations. For flexibilityy, CHAOS-ART transactions have
three classes of attributes: real-time, concurrency control, and recovery. The values of
the attributes can be varied to reflect a variety of high-level interaction semantics.

DRAGON SLAYER/MELODY (Horst Wedde, Wayne State University)

DRAGON SLAYER is a distributed real-time operating system, and MELODY
is its adaptive file system. They are designed to operate in a hazardous environment; in
particular, they are targeted to military land vehicles of the 1990s. Their goals include
real-time responsiveness, reliability, fault tolerance, and graceful degradation. The
DRAGON SLAYER/MELODY developers recognize that these goals can compete and
conflict with one another. They have designed DRAGON SLAYER and MELODY to be
able to adapt to changes in the environment and to achieve the desired balance among the
competing goals. For example, files can be replicated for fault tolerance. But maintain-
ing the consistency of the copies, through concurrency control algorithms, introduces
overhead and delay, which can lead to missed deadlines. The DRAGON
SLAYER/MELODY approach is to incorporate two levels of concurrency control,
strong and weak. DRAGON SLAYER and MELODY monitor their environment and
their own performance (in the form of an access history and missed deadline history).
They then generate, relocate, or delete copies of files, and choose between strong and
weak concurrency control algorithms, based on the results of the monitoring.

19

HARTOS (Kang Shin, University of Michigan)

HARTOS is an operating system designed for an experimental distributed real-
time system called the Hexagonal Architecture for Real-Time Systems (HARTS).
HARTS consists of multiprocessor nodes that communicate via a hexagonal mesh inter-
connection network, in which nodes have six neighbors. Each HARTS node has one or
more application processors and a supporting network processor, which all run the HAR-
TOS kernel and communicate via a backplane bus. Research is focused on fault-tolerant
real-time communication and computing. The hexagonal mesh interconnection network,
due to its inherent redundancy (in the form of multiple paths between pairs of nodes),
provides a good foundation for fault tolerance. HARTOS is meant to build on this found-
ation. It provides location-transparent interprocess communication, with cptions for
broadcast and multicast message delivery. It is intended to support process replication,
through a process group mechanism, which in turn relies on the broadcast/multicast mes-
sage delivery. Other research issues include fault-tolerant routing of messages through
the hexagonal mesh, real-time scheduling of messages with deadlines, and clock synchro-
nization.

Distributed iRMX (Timothy Saponas, Intel Corporation)

The Distributed iRMX operating system is the newest member of Intel’s iRMX
family of real-time operating systems. It runs on a distributed system consisting of multi-
ple single-board computers (based on the Intel 386 microprocessor) interconnected via
the MULTIBUS II message-passing backplane bus. Program development can be sup-
ported in this environment (i.e., in the same chassis) by a separate single-board computer
running UNIX. Distributed iRMX is implemented as a layered operating system. The
lowest layer is the kernel, iRMK, which performs task management, interrupt manage-
ment, time management, and basic device management. The second layer is the nucleus,
which provides a preemptive, priority-driven scheduler for real-time responsiveness, and
a set of protection mechanisms (e.g., segmentation, privilege rings, isolated address
spaces) for reliability and security. The nucleus also provides ports and mailboxes for
intertask communication on an intraprocessor or interprocessor basis. The third layer is
a network transport service, which provides OSI-based communication across a LAN.
The fourth layer is a distributed I/O System, which provides a distributed real-time file
system. Applications run as multi-tasking jobs, where jobs have isolated address spaces,
and tasks run as lightweight processes within jobs.

20

Mach and Real-Time Mach (Richard Rashid and Hideyuki Tokuda, Carnegie Mellon Uni-
versity)

Mach is a distributed operating system kernel designed as a foundation for system
software. The Mach kernel implements the basic abstractions of task (i.e., address space
and port rights), thread (i.e., lightweight process, of which multiple can exist within a
task), port (which play a naming and protection role similar to that performed by capabil-
ities), message, and memory object. Different operating system environments can be
built on top of these abstractions. Historically, the UNIX environment has been associ-
ated with Mach. Mach has provided a portable, high-performance platform for UNIX,
enabling the wealth of UNIX software to run on a wide variety of advanced computer
architectures. Due in part to its association with UNIX, Mach is aimed at interactive
computing. Real-Time Mach is a version of the Mach kernel being developed for real-
time computing, as part of CMU’s ART project. Some of Mach’s resource management
policies are being modified to meet the real-time computing demand for predictability
instead of the interactive computing demands for efficiency and fairness. Concepts from
the ARTS operating system, including the ARTS real-time thread model and the ARTS
scheduler (ITDS), are being incorporated into the Mach kernel. In addition, Mach is
being integrated with the ARTS tools, Scheduler 1-2-3 and ARM.

MARUTI (Ashok Agrawala and Satish Tripathi, University of Maryland)

MARUTI is a distributed real-time operating system designed for hard real-time,
fault-tolerant, secure computing. MARUTI is object based. A MARUTI object has ser-
vices that are invoked through service access points. An object also has a non-conven-
tional component known as a joint. The joint holds static information giving resource,
timing, fault tolerance, and security requirements for the services offered by the object. It
also holds dynamic information, including a calendar that contains a temporal ordering of
object services to be executed. MARUTI’s approach to real-time computing is
guaranteed-service scheduling. That is, once it accepts a job (defined by a computation
graph giving services to be executed), MARUTI guarantees that the timing constraints of
the job will be met with a specified degree of fault tolerance. MARUTI utilizes replica-
tion and consistency-control mechanisms to implement user-specified fault-tolerance con-
straints. It utilizes capabilities for protection and security. Currently, MARUTI is imple-
mented on top of UNIX as a three-layered system (i.e., kernel, supervisor, and applica-
tion), but a version in which the MARUTI kernel directly manages hardware resources is
being developed.

21

Spring Kernel (John Stankovic and Krithi Ramamritham, University of Massachusetts)

The Spring Kernel is a distributed real-time operating system kernel designed for
next-generation hard-real-time systems. It is implemented on a network of multiproces-
sors called SpringNet. Each node in SpringNet contains one or more application proces-
sors, one or more system processors, and an I/O subsystem. The system processors
offload scheduling and other system functions from the application processors, and the
I/O subsystem offloads some 1/0, including intensive I/O from fast sensors. The applica-
tion processors can thus be dedicated to real-time application tasks. In the Spring proj-
ect, tasks are assumed to fall into three categories: critical, essential, and non-essential.
Critical tasks are ones with hard deadlines; if a hard deadline is missed, catastrophic
results might occur. In the Spring project approach, the hard deadlines of these tasks are
guaranteed to be met by preallocating resources to their worst case. Essential tasks are
ones that have deadlines and are important to the system, but do not lead to catastrophe
if they miss their deadlines. Since there are many of these tasks, it is not feasible to preal-
locate resources to their worst case. The Spring project approach to these tasks is to
establish on-line, dynamic guarantees for them if sufficient resources are available, or to
provide early notification of imminent missed deadlines if resources are not available.
Non-essential tasks then run in the background. Much effort in the Spring project has
been devoted to the development of scheduling algorithms for this environment of mixed
tasks.

StarLite Operating System (Robert Cook, University of Virginia)

The StarLite operating system is being developed in the context of the StarLite
programming environment. This programming environment supports the development
and execution of software for uniprocessors, multiprocessors, and distributed systems.
Research topics being explored include prototyping and real-time operating system, data-
base, and network technology. The StarLite operating system is designed to be adaptable
and extensible. It is a layered system, with standard interfaces at each layer. A layer can
have multiple implementations, each tailored to a certain environment, and each provid-
ing the standard interfaces. Layers are carefully defined, so that (1) individual layers
(such as a file management layer) can be left out of a particular implementation if not
needed and (2) individual layers can be implemented in hardware. A layered, real-time
UNIX has already been implemented in the StarLite programming environment. A long-
term goal of the StarLite project is to create an operating system generator, which would
automatically select and compose implementations from a module library, based on input
specifications describing the application requirements and the target architecture. The
StarLite project is building a library of implementations suitable for real-time computing.
Among recent additions to the library are real-time deadlock avoidance algorithms.

22

V (David Cheriton, Stanford University)

V is a distributed operating system designed as a general-purpose base for distri-
buted computing, including real-time distributed computing. V is noted for its minimal
kernel. The V kernel is said to act as a “software backplane”: just as a hardware back-
plane provides slots, power, and communication, the V kernel provides address spaces,
lightweight processes, and interprocess communication in the form of message transac-
tions. Conventional operating system services, such as file management and printing, are
provided by system servers, which are implemented above the V kernel at the user level
as multiprocess programs. V is also noted for its interprocess communication, which
offers fast response and several other features (e.g., datagrams, multicast delivery, prior-
itized message transmission and delivery, and conditional message delivery) that are
viewed by the V developers as being keys to providing real-time responsiveness. Addi-
tional V mechanisms that facilitate real-time computing include strict priority-based
scheduling, accurate time services, and the ability to lock programs in memory.

23

5. METHODS FOR ENHANCING REAL-TIME SYSTEM ROBUST-
NESS BY TRADING PRECISION FOR TIMELINESS

Real-time systems are built to accommodate a specified level of workload. For
some systems, this “built-to’ level may represent an absolute worst-case workload. For
most large complex systems such as strategic defense systems, however, the built-to level
represents an estimate of the worst-case workload or some acceptable fraction of the
known or estimated worst-case workload. In practice, the estimate or the acceptable
fraction cannot be too high, or the system would be far too expensive; therefore, the
built-to level actually falls short of the absolute worst-case workload for many real-time
systems.

When the workload of an operational real-time system temporarily exceeds its
built-to level, a “transient overload” is said to occur. A transient overload need not inev-
itably lead to total system failure. Indeed, a system that cannot tolerate any transient
overloads would be too brittle to be useful in real missions. The more tolerant of tran-
sient overloads a real-time system is, the more robust and useful it is.

One approach to enhancing robustness with respect to transient overloads is to
ensure that the deadlines or other timing constraints that are missed are those associated
with the “least important” tasks. This approach is often taken in an ad hoc manner, sim-
ply by assigning priorities in accordance with importance. (Unfortunately, such priority
assignments are suboptimal, and lead to unpredictable performance as well.) Rate
monotonic scheduling theory takes a more disciplined approach through the period trans-
formation method [Sha 87]. Similar approaches are taken in aperiodic real-time schedul-
ing methods, such as the best-effort scheduling algorithm explored by Locke [Locke 86],
in which workload is shed so that overall ‘“‘value” to the system is maximized.

Another approach to enhancing robustness with respect to transient overloads is.
to trade precision for timeliness. In this approach, all deadlines are met, but they are met
in a redefined sense. In particular, the computation time devoted to some tasks (prior to
their deadlines) is reduced—at the cost of reduced precision in the results of the tasks.
Thus, tasks meet their deadlines, but they do so by settling for approximate results rather
than “exact” results.

Section 5.1 presents an example to help motivate the concept of trading precision
for timeliness in the event of transient overload. In Sections 5.2 and 5.3, two methods of
making the precision ar : timeliness tradeoffs are briefly described. The methods are dis-
cussed in detail in Appendix C, “Trading Precision for Timeliness: An Approach to the
Development of Robust Real-Time Systems.”

5.1 EXAMPLE

As an example, consider a fictitious autonomous reconnaissance drone. The
drone has its own navigation and terrain avoidance system, and is designed to fly
knap-of-the-earth to the target location, gather intelligence, and return to base. The sys-
tem also has a rudimentary threat avoidance system that takes evasive action when it
detects a missile lock. Under normal operating circumstances, the real-time system must
perform the following periodic tasks: (1) maintain course by correlating midflight naviga-
tional corrections, (2) maintain cover while avoiding terrain, and (3) fine-tune the engine
to conserve fuel. Since this is a periodic system, it is easily handled by a traditional real-
time scheduler.

Unscheduled events, such as when an obstacle is detected ahead or when hostile
missile lock is detected, tend to cause unpredictable levels of overload in the system, and
overbuilding the system to handle all overload situations can be costly. An alternative
approach is to allow the system to spend less time on operations of less importance by
accepting less accuracy during the transient overload period. For example, if an unex-
pected obstacle is detected, precise fine-tuning of the engine can be sacrificed while more
time is allocated to the terrain avoidance system. This action is still consistent with fulfill-
ing the mission since the amount of fuel wasted in that short time is negligible, but crash-
ing into obstacles will certainly end the mission. Similarly, when missile lock is detected,
precise knap-of-the-carth terrain following can be sacrificed since maintaining cover is
momentarily unnecessary.

5.2 BACKUP APPROXIMATION METHOD

The backup approximation method [Liestman and Campbell 80; Liestman and
Campbell 86] seeks to ensure that all deadlines are met by augmenting primary tasks that
cannot be reliably scheduled to meet deadlines with alternate tasks that can be reliably
scheduled. The primary tasks provide exact solutions but have variable execution times,
while the alternate tasks have predictable, bounded execution times but provide solutions
of less accuracy. The alternate task is always scheduled, so that if the primary task
misses a deadline, the scheduler can automatically substitute the approximate solution
provided by the alternate task. Thus, all deadlines are met, with accuracy or precision
traded for timeliness where necessary. Scheduling algorithms designed to support the

26

concept of backup approximations seek to ensure all deadlines are met while minimizing
the number of alternate tasks that must be substituted.

5.3 IMPRECISE COMPUTATION METHOD

The imprecise computation method is the subject of a real-time computing
research effort at the University of Illinois [Chung 90; Liu 89; Shih 89]. In this method,
each task is broken up into two parts: a mandatory subtask that produces a rough (but in
some sense acceptable) result, and an optional subtask that refines it. The deadlines for
both mandatory and optional subtasks are the original task deadline. All mandatory sub-
tasks are required to finish by their deadlines, with optional subtasks running in any left-
over time before the deadline arrives. Additionally, all mandatory subtasks are required
to complete before their optional counterparts can begin, since the optional subtasks use
the results of the mandatory subtasks as the starting points of their computations.

The optional subtask must have the property that the accuracy of its result mono-
tonically increases with the amount of time spent on the computation. This restriction
allows the scheduler to increase the accuracy of any solution by allocating the optional
subtask more time for computation. This restriction also ensures that the optional subtask
can be preempted at any time and the best result so far computed will be available.

Algorithms Amenable to the Imprecise Computation Method

Trading precision for timeliness can be beneficial for many real-time applications
where an imprecise but timely answer is more valuable than a late answer. The key to
building such systems is to find ways to structure problems so that successive refinement
algorithms, such as jterative bounding algorithms, can be utilized.

Iterative bounding algorithms converge to a solution by successive refinement of
upper and lower bounds. The convergence may alternate between upper and lower
bounds, as in a binary search algorithm, or it may proceed from a single bound.

Algorithms that converge by squeezing a solution between steadily approaching
upper and lower bounds are referred to as partitioning algorithms. Examples of parti-
tioning algorithms include sectioning algorithms such as Newton’s method for finding the
root of an expression, branch and bound techniques, well-behaved series expansions with
alternating terms, binary and interpolation searches, and other searching techniques.

Accumulation algorithms are similar to iterative bounding algorithms in that they
converge by successive accumulation of the solution. The difference is that one of the
bounds is not well defined. The algorithm then works by accumulating from the defined
bound. Many greedy algorithms fall into this category since they build solutions by

27

accumulation and do not reverse previous computations. Examples of this type of algo-
rithms include minimal spanning tree algorithms, maximal graph matching by alternating
path methods, minimal path algorithms, and series expansions with non-negative terms.

Iterative bounding algorithms are well suited for the imprecise computation
method. The successive refinement nature of these algorithms makes them ideal candi-
dates for use as optional tasks. The mandatory tasks can be computed either using the
iterative algorithm with a fixed number of iterations, or using some other algorithm.
Moreover, it is often possible to prove that the function of error in the solution over time
has a particular shape (e.g., linearly decreasing, convexly decreasing). This information
can be used in selecting appropriate scheduling algorithms [Chung 90].

6. PERFORMANCE ANALYSIS OF APERIODIC REAL-TIME SYS-
TEMS

In this section, an issue in need of increased R&D is raised. The issue is the per-
formance analysis of aperiodic real-time systems, as well as of the aperiodic element of
systems that are primarily periodic.

In general, development of real-time applications is undertaken in one of two
divergent frameworks: a periodic framework or an aperiodic framework. In a periodic
framework, an application is developed as a collection of periodic tasks, which are ini-
tiated at regular time intervals known as periods. In an aperiodic framework, an applica-
tion is developed as a collection of aperiodic tasks, which are initiated at irregular time
intervals in response to asynchronous events.

The periodic framework has the advantage that timing constraints are explicitly
taken into account through the period mechanism. The end of each period is the hard
deadline for the task initiated at the beginning of the period. Period lengths are chosen so
that an application can “keep pace” with its environment. Since task arrivals are syn-
chronized, a system can be sized to guarantee that all deadlines are met. Rate monotonic
scheduling theory, discussed in Section 2 of this paper, affords an efficient, effective, disci-
plined approach to the development and sizing of periodic real-time systems.

The disadvantage of the purely periodic framework is that it does noi accommo-
date asynchronous events (or aperiodic tasks), which inevitably occur in large complex
real-time systems such as strategic defense systems. However, the periodic framework
can be adapted to deal with asynchronous events in various ways. For example, a peri-
odic task can be created to service asynchronous events (in which case the periodic task
in effect polls for event occurrences), or asynchronous events can be processed as back-
ground tasks. Sprunt, Sha, and Lehoczky present methods for scheduling aperiodic tasks
in a specific periodic framework—the rate monotonic framework [Sprunt89]. Their
methods provide lower average response times for aperiodic tasks than either polling or
background processing, while at the same time maintaining guarantees of meeting all
periodic task deadlines.

In an aperiodic framework, processing is event driven rather than periodic.
Events occur asynchronously. Typically, priorities are used to establish a service ordering

29

for events. In general, the resource management objective is to process events as fast as
possible, subject to their priorities.

In an aperiodic framework, it is difficult to accommodate periodic tasks. The
problem is that the periodic tasks have hard deadlines and expect 100% of them to be
met. Unless sufficient processor time is reserved for periodic tasks, for example, by giving
all periodic tasks higher priorities than all aperiodic tasks, then providing such deter-
ministic assurance (of meeting 100% of the deadlines) is infeasible. Aperiodic tasks with
hard deadlines suffer from the same lack of deterministic assurance, unless they are well-
behaved in the sense of having some reasonable minimum separation time and can have
sufficient processor time dedicated to them. As soon as a stochastic component (namely,
aperiodic tasks or asynchronous events) is introduced into a system’s workload, assur-
ance of meeting deadlines must be cast in stochastic terms rather than absolute, deter-
ministic terms. This point is illustrated in Appendix D, “Scheduling Aperiodic Tasks
with Hard Deadlines in a Rate Monotonic Framework,” which presents analytical results
on cost and performance tradeoffs that must be made when aperiodic tasks with hard
deadlines are introduced into a rate monotonic scheduling framework.

The shortcoming of the traditional (priority-driven) aperiodic framework is that it
lacks mechanisms for dealing with time. Timing constraints are not specified, either
explicitly or implicitly. Consequently, analytical methods are not available for ensuring
that the timing constraints are met. Application developers are afforded little support in
sizing the system to ensure that ‘“as fast as possible” is indeed fast enough. They must
rely on empirical performance evaluation methods, such as simulation and testing.

In efforts to address this concern, mechanisms for introducing timing constraints
into aperiodic frameworks have been proposed and investigated, but analytical methods
to support the development of aperiodic real-time systems utilizing these new mechanisms
have not been developed. For example, time-value functions and best-effort scheduling
can be utilized to achieve good results under stressful workloads [Jensen 85; Locke 86];
but before they can be effectively applied in the development of large complex real-time
systems, specific guidance on how to assign time-value functions to tasks must be formu-
lated, and analytical methods for estimating the performance actually yielded by best-
effort scheduling must be developed.

Without analytical methods for evaluating performance, application developers
will have to continue relying upon simulation and/or testing. Besides being costly, simula-
tion and testing cannot provide the same kind of assurance as, for example, rate mono-
tonic scheduling theory provides for periodic real-time system development.

The Office of Naval Research (ONR) recognizes this problem. Its purpose in
launching its Accelerated Research Initiative on real-time computing was to establish a
scientific foundation for developing real-time systems, both periodic-based and aperiodic-
based. The ONR is addressing the problem, in part, through efforts in formal specifica-
tion and verification [ONR 90].

While analytical methods for performance evaluation may not be able to provide
the same kind of assurance as formal specification and verification can provide, they can
potentially offer more assurance than simulation and testing at less cost than simulation,
testing, or formal specification and verification. The model for these analytical methods
is the body of queueing theory that has been developed for the analysis of general-purpose
(i.e., non-real-time) computing systems. For general-purpose computing systems, queue-
ing theory provides good results over a wide range of system and workload parameters for
modest effort and resources. An analogous body of theory for aperiodic-based real-time
systems would revolutionize real-time system development.

31

7. RECOMMENDATIONS

We conclude by making recommendations on each of the five topics highlighted in
this paper:

Rate Monotonic Scheduling Theory

Recommendation: The SDIO should encourage the use of rate monotonic
scheduling theory in the development of strategic defense real-time systems, in
particular, those real-time systems that are periodic or primarily periodic. The
SDIO should seek to do so through multiple means, such as education, training,
policy, guidance, contractual requirements, and pilot projects.

Rationale: The rate monotonic scheduling algorithm and the theory that has
evolved around it offer several important features, including (1) straightforward
assignment of scheduling attributes, (2) straightforward scheduler, (3) low over-
head, (4) efficiency, (5) predictability, (6) adaptability, (7) applicability to Ada
real-time systems, and (8) extensibility. These features combine to yield an effec-
tive, efficient, disciplined approach to the development of periodic, as well as pri-
marily periodic, real-time systems. A disciplined approach to development is
essential for large, complex, mission-critical systems such as strategic defense sys-
tems.

1IEEE Real-Time Extensions to POSIX

Recommendation: The SDIO should consider the adoption of open system stan-
dards, in particular, POSIX.1 and the real-time extensions to POSIX.1 that are
embodied in draft standards P1003.4 and P1003.4a.

Rationale: Open system standards, in general, offer several benefits that could
significantly enhance the producibility and affordability of strategic defense sys-
tems: (1) connectivity and interoperability, (2) portability of programs, data, and
people, (3) protection of software investment, (4) and encouragement of COTS
acquisitions. As widely supported open system (draft) standards, the IEEE real-
time extensions to POSIX would enable SDI to reap these benefits. In addition to
being open system standards, the real-time extensions to POSIX hold promise for

33

evolving into technically sound interfaces that effectively capture the best of the
state of the practice in real-time operating systems.

Distributed Real-Time Operating System R&D

Recommendation: The SDIO should monitor the distributed real-time operating
system R&D efforts taking place in government, industry, and academia, so that it
can be prepared to exploit any breakthroughs that could facilitate the develop-
ment, operation, and maintenance of strategic defense systems.

Rationale: The IEEE real-time extensions to POSIX are not, and do not pretend
to be, the ultimate real-time operating system. Several ongoing real-time operat-
ing system R&D efforts are exploring new approaches to real-time computing.
Many of the new approaches explicitly deal with time and timing constraints. In
addition, the R&D efforts are addressing other issues of vital importance to the
SDIO, most notably distributed system issues and reliability and fault tolerance
issues. Therefore, it behooves the SDIO to keep abreast of developments in the
real-time computing R&D community.

Methods of Trading Precision for Timeliness

Recommendation: The SDIO should exploit the concept of trading precision for
timeliness to enhance system robustness. The SDIO should do so by (1) increas-
ing awareness of the concept through education and training and (2) investigating,
through funded R&D, the applicability of specific methods, such as the backup
approximation and imprecise computation methods, to strategic defense system
algorithms.

Rationale: In order for a strategic defense system or any other real-time system to
be useful, it must be robust; specifically, it must be able to tolerate the transient
overloads that will inevitably occur due to component failures, surges in threat
levels, and variations in task computation times. Trading precision for timeliness
can be an effective means of dealing with transient overloads. The backup
approximation and imprecise computation methods represent disciplined
approaches for making precision and timeliness tradeoffs.

Performance Analysis of Aperiodic Real-Time Systems

Recommendation: The SDIO should sponsor research on performance analysis of
aperiodic real-time systems. The SDIO could solicit ideas and proposals through
a mechanism such as the Broad Agency Announcement, which would encourage

34

innovation on the part of researchers and would allow the SDIO to selectively
fund those proposals deemed to be the most promising in terms of meeting the
specific requirements of strategic defense systems.

Rationale: Without analytical methods for evaluating the performance of
aperiodic real-time systems, developers will have to continue relying upon costly,
time-consuming methods such as simulation and testing.

35

REFERENCES

Baker 90

Baker and
Shaw 89

Brykczynski 90

Chung 90

Cooper and

Draves 87

DCA 89

DSB 87

Baker, T.P. 11 January 1990. Realtime Extension for Portable Operat-
ing Systems Ada Binding. Report for U.S. Army HQ CECOM,
Center for Software Engineering.

Baker, T.P. and A. Shaw. 1989. The Cyclic Executive Model and Ada.
Real-Time Systems 1, 1 (June), 7-25.

Brykczynski, B.R., C. Youngblut, and R.N. Meeson. 1990. A Stra-
tegic Defense Initiative Organization Software Testing Initiative. IDA
Paper P-2493. Alexandria, VA: Institute for Defense Analyses.

Chung, J. Y., J. W. S. Liu, and K. J. Lin. 1990. Scheduling Periodic
Jobs that Allow Imprecise Results. IEEE Transactions on Computers
39, 9 (September), 1156-1174.

Cooper, E.C. and R.P. Draves. 2 March 1987. C Threads. Draft
Paper. Pittsburgh, PA: Carnegie Mellon University, Department of
Computer Science.

Defense Communications Agency. November 1989. WWMCCS ADP
Modernization (WAM) Decision Coordinating Paper (DCP). Washing-
ton, D.C.: DCA.

Defense Science Board. September 1987. Report of the Defense Sci-
ence Board Task Force on Military Software. Washington, D.C.: U.S.
Department of Defense.

37

Fife 87

Gordon and
Linn 89

IEEE 89

IEEE 90a

IEEE 90b

ISO %0

Jensen 85

Kovsky 90

Fife, D. et al. October 1987. Evaluation of Computer-aided System
Design Tools for SDI Battle Management/C3 Architecture Develop-
ment. IDA Paper P-2062. Alexandria, VA: Institute for Defense Ana-
lyses.

Gordon, K.D. and C.J. Linn. April 1989. Strategic Defense System
Distributed Operating System R&D: Review and Recommendations.
IDA Paper P-2142. Alexandria, VA: Institute for Defense Analyses.

IEEE, Inc., Technical Committee on Operating Systems of the IEEE
Computer Society. 1989. Realtime Extension for Portable Operating
Systems, P1003.4/D9. New York, New York: IEEE, Inc.

IEEE, Inc., Technical Committee on Operating Systems of the IEEE
Computer Society. 1990. Draft Information Technology—Language
Bindings to Portable Operating System Interfaces (POSIX)—Part 2:
Ada, P1003.5/D5. New York, New York: IEEE, Inc.

IEEE, Inc., Technical Committee on Operating Systems of the IEEE
Computer Society. 1990. Threads Extension for Portable Operating
Systems, P1003.4a/D5. New York, New York: IEEE, Inc.

International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC). 1990. ISO/IEC 9945-1: 1990
(IEEE Std 1003.1-1990), Information Technology—Portable Operating
System Interface (POSIX)—Part 1: System Application Program
Interface (API) [C Language].

Jensen, E.D., C.D. Locke, and H. Tokuda. December 1985. A Time-
Driven Scheduling Model for Real-Time Operating Systems. In
Proceedings of IEEE Real-Time Systems Symposium, 112-122.

Kovsky, Steven. 1990. NASA Chooses LynxOS For Space Station
System. Digital Review 7, 2 (January 15), 49.

38

Liestman and
Campbell 80

Liestman and
Campbell 86

Liu 89

Liu and Lay-

land 73

Locke 86

McJones and
Swart 87

Mok 83

NIST 90

Liestman, A. L. and R. H. Campbell. 1980. A Fault-Tolerant
Scheduling Problem. Technical Report UIUCDCS-R-80-1010.
Urbana, IL: University of Illinois, Dept. of Computer Science.

Liestman, A. L. and R. H. Campbell. 1986. A Fault-Tolerant Schedul-
ing Problem. IEEE Transactions on Software Engineering SE-12, 11
(November).

Liu, J. W. S,, K. J. Lin, C. L. Liu, and C. W. Gear. September 1989.
Research on Imprecise Computations in Project QuartZ. In Proceed-
ings of the 1989 Workshop on Operating Systems for Mission Critical
Computing, University of Maryland, College Park, MD.

Liu, C.L. and J.W. Layland. 1973. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment. Journal of the
ACM 20, 1 (January), 46-61.

Locke, C. Douglass. 1986. Best-Effort Decision Making for Real-Time
Scheduling. Ph.D. Diss. Pittsburgh, PA: Carnegie Mellon University.

McJones, P.R. and G.F. Swart. September 1987. Evolving the UNIX
System Interface to Support Multithreaded Programs. Research
Report 21, DEC Systems Research Center.

Mok, A.K. 1983. Fundamental Design Problems of Distributed Sys-
tems for the Hard Real-Time Environment. Ph.D. Diss. Cambridge,
MA: MIT, Department of Electrical Engineering and Computer Sci-
ence.

National Institute of Standards and Technology. 15 November 1990.
Application Portability Profile (APP): The U.S. Government’s Open
System Environment Profile. Draft NIST Special Report. Gaithers-
burg, MD: National Institute of Standards and Technology, Systems
and Software Technology Division, National Computer Systems
Laboratory.

39

ONR %0

OSSWG 90

Rajkumar 88

Sha 87

Sha 88

Sha and
Goodenough
90

Shih 89

Sprunt 89

Office of Naval Research. 25-26 October 1990. Office of Naval
Research Third Annual Workshop on Foundations of Real-Time Com-
puting Research Initiative, Washington, D.C.

Operating Systems Standards Working Group (OSSWG). 1 June 1990.
Recommendation Report for the Next-Generation Computer Resources
(NGCR) Operating Systems Interface Standard Baseline. Compiled by
D.P. Juttelstad. NUSC Technical Document 6902. Newport, RI:
Naval Underwater Systems Center.

Rajkumar, R., L. Sha, and J.P. Lehoczky. December 1988. Real-Time
Synchronization Protocols for Multiprocessors. In Proceedings of
IEEE Real-Time Systems Symposium.

Sha, L., J.P. Lehoczky, and R. Rajkumar. 1987. Task Scheduling in
Distributed Real-Time Systems. In Proceedings of IEEE Industrial
Electronics Conference.

Sha, L., R. Rajkumar, and J.P. Lehoczky. 23 May 1988. Priority
Inheritance Protocols: An Approach to Real-Time Synchronization.
Pittsburgh, PA: Carnegie Mellon University, Departments of CS,
ECE, and Statistics.

Sha, L. and J.B. Goodenough. 1990. Real-Time Scheduling Theory
and Ada. IEEE Computer 23, 4 (April), 53-62.

Shih, W. K., J. W. S. Liu, J. Y. Chung, and D. W. Gillies. July 1989.
Scheduling Tasks with Ready Times and Deadlines to Minimize Aver-
age Error. ACM Operating Systems Review.

Sprunt, B., L. Sha, and J. Lehoczky. 1989. Aperiodic Task Scheduling
for Hard-Real-Time Systems. Real-Time Systems 1, 1 (June), 27-60.

Stankovic 88

Stankovic 89

UOM 89

Wheeler 90

Youngblut 89

Stankovic, J.A. 1988. Misconceptions About Real-Time Computing:
A Serious Problem for Next-Generation Systems. IEEE Computer 21,
10 (October), 10-19.

Stankovic, J.A., W.A. Halang, and M. Tokoro. 1989. Editorial. Real-
Time Systems 1, 1 (June), 5-6.

University of Maryland. 19-21 September 1989. 1989 Workshop on
Operating Systems for Mission Critical Computing, University of
Maryland, College Park, Maryland.

Wheeler, D.A. et al. 1990. Reviews of Selected System and Software
Tools for Strategic Defense Applications. IDA-Paper P-2177. Alexan-
dria, VA: Institute for Defense Analyses.

Youngblut, C. et al. 1989. SDS Software Testing and Evaluation: A
Review of the State-of-the-Art in Software Testing and Evaluation with
Recommended R&D Tasks. IDA Paper P-2132. Alexandria, VA: Insti-
tute for Defense Analyses.

41

APPENDIX A

REAL-TIME OPERATING SYSTEMS:
OVERVIEW OF THE STATE OF THE PRACTICE

1. REAL-TIME COMPUTING SYSTEMS

Real-time computing systems are designated as such because of the significance
of the role that the time dimension plays in them. In the premier issue of Real-Time Sys-
tems, the introductory editorial characterizes real-time systems as that category of sys-
tems in which “the correctness of the system depends not only on the logical results of
computations but also on the time at which the results are produced” [Stankovic 89, 6].

Thus, in real-time computing systems, timeliness is mandatory. Timing con-
straints are imposed by the environment in which the real-time computing system exists.
Typically, the environment consists of a larger controlled system (e.g., automobile, air-
craft, ship, submarine, missile, hospital patient monitoring system, air traffic control sys-
tem, factory floor, nuclear power plaat, etc.), which is in turn embedded in and affected
by its physical environment. The real-time computing system is the controlling system.
Failure to meet environment-imposed timing constraints can have catastrophic conse-
quences, such as loss of life, loss of the controlled system, or failure of the mission of the
controlled system.

The qualifiers “hard” and “soft” are often used in conjunction with the term
“real-time system.” While precise definitions have not been agreed upon, the general dis-
tinction seems to lie in the nature of the timing constraints. Hard real-time systems have
timing constraints that are both rigid and mandatory. For example, a task may have an
absolute upper bound on response time that must never be exceeded. Such an upper
bound is referred to as a hard deadline. Soft real-time systems, on the other hand, have
more flexible timing constraints (sometimes referred to as soft deadlines). In the exam-
ple, flexibility could entail (1) relaxing the requirement that the upper bound never be
exceeded, by moving from deterministic performance specifications to stochastic specifi-
cations (e.g., response to an operator action must occur within 350 milliseconds with 97%
probability), or (2) relaxing the upper bound itself, so that a response computed after the
‘“‘upper bound” is still usable, although in some sense less valuable [Jensen 85; Locke 86],
or (3) some combination of the above.

2. REAL-TIME APPLICATION DEVELOPMENT FRAMEWORKS

In general, development of real-time applications is undertaken in one of two
divergent frameworks: a periodic framework or an aperiodic, asynchronous event-driven
framework. In a periodic framework, an application is developed as a collection of
periodic tasks. A periodic task is one that is initiated at regular time intervals, or periods.

The periodic framework has the advantage that timing constraints are explicitly
taken into account through the period mechanism. The end of each period is the hard
deadline for the task initiated at the beginning of the period. Period lengths are chosen so
that an application can “keep pace” with its environment. Since task arrivals are syn-
chronous, a system can be sized to guarantee that all deadlines are met. The disadvan-
tage of the purely periodic framework is that it does not accommodate asynchronous
events (or aperiodic tasks) which inevitably occur in all but the simplest control systems.

However, the periodic framework can be adapted to deal with asynchronous
events in various ways. For example, a periodic task can be created to service asynchro-
nous events (in which case the periodic task in effect “polls” for event occurrences), or
asynchronous events can be processed as background tasks. In the June 1989 issue of
Real-Time Systems [Sprunt 89], Sprunt, Sha, and Lehoczky present methods for schedul-
ing aperiodic tasks in a specific periodic framework—the rate monotonic framework.!
Their methods provide lower average response times for aperiodic tasks than either pol-
ling or background processing, while at the same time maintaining guarantees of meeting
all periodic task deadlines.

In an aperiodic framework, processing is not primarily periodic but is instead
event driven. Events occur asynchronously. Typically, priorities are used to establish a
service ordering for events. In general, the resource management objective is to process
events as fast as possible, subject to their priorities. In this type of framework, it is
periodic tasks that are anomalous. The problem is not the fact that their interarrival
times are constant but the fact that they have hard deadlines and expect 100% to be met.
Unless sufficient processor time is reserved for periodic tasks, for example, by giving all
periodic tasks higher priorities than all aperiodic tasks, then providing such deterministic
assurance is infeasible. Aperiodic tasks with hard deadlines suffer from the same lack of
deterministic assurance unless they are well-behaved in the sense of having some reason-
able minimum separation time and can have sufficient processor time dedicated to them.
In general, as soon as a stochastic component (namely, aperiodic tasks or asynchronous

1. In a rate monotonic framework, tasks are assigned static priorities according to their arrival rates: tasks
with higher rates are assigned higher priorities. Task scheduling is preemptive priority-driven. The rate
monotonic algorithm was shown to be optimal among the class of preemptive, static priority driven
algorithm by Liu and Layland [Liu and Layland 73).

A-2

events) is introduced into a system’s workload, assurance must be cast in stochastic terms
rather than absolute, deterministic terms.

The disadvantage of the traditional (priority-driven) aperiodic framework is that
it lacks mechanisms for dealing with time. Timing constraints are not specified, either
explicitly or implicitly. Consequently, methods are not available for ensuring that the tim-
ing constraints are met. The application developer is afforded little support in sizing the
system to ensure that “as fast as possible” is indeed fast enough. In efforts to address this
concern, methods for introducing timing constraints into aperiodic frameworks have been
proposed and investigated [Jensen 85; Locke 86], but have not yet made the transition to
become a part of the state of the practice in real-time computing.

3. OPERATING SYSTEM SUPPORT FOR REAL-TIME COMPUT-
ING

As recently pointed out by Stankovic [Stankovic 88], today’s real-time systems
are built through brute-force techniques and at inordinate expense. As systems become
ever larger and more complex, a more “scientific’’ approach is called for. An important
ingredient of any scientific approach is an operating system designed to meet the unique
needs of real-time computing, i.e., a real-time operating system.

Operating systems that claim to be real-time generally offer one or more of the
following categories of services and features: mission-driven/application-directed
resource management, timely response to events, predictable service times and overhead
times, and time services that make time visible and accessible to applications. The signi-
ficance of each of these categories is discussed below. It should be noted that most real-
time operating systems are targeted to only one of the two real-time application develop-
ment frameworks described above and that the importance of the different categories of
services and features varies according to the target framework. For example, time ser-
vices, specifically ones that enable periodic initiation of tasks, are more critical in a
periodic development framework, while timely response to events is more critical in an
aperiodic framework.

3.1 MISSION-DRIVEN/APPLICATION-DIRECTED RESOURCE MANAGE-
MENT

Over the past two decades, operating system research has been focused primarily
on interactive computing. Common resource management goals have been to minimize
average delay, maximize average throughput, and ensure “fairness” to competing users.
While such efficiency-related and faimess-related goals may be well suited to the require-
ments of interactive computing, they do not adequately meet the requirements of

A-3

real-time computing. As discussed previously, real-time computing systems are dis-
tinguished by the presence of environment-imposed timing constraints.

A real-time operating system must be designed in accordance with the fact that a
real-time computing system exists to perform a mission. The operating system should be
supportive of the mission: the resource management provided by the operating system
should be neither efficiency driven nor fairness driven, but mission driven. In particular,
resource management should be driven by the time constraints of the mission, as con-
veyed to the operating system by the application. It is the responsibility of the application
to specify resource management attributes to the operating system, and it is the responsi-
bility of the operating system to manage all resources according to the application-speci-
fied attributes.

Mission-driven, application-directed resource management entails the following:

a. Application-directed allocation: In order to provide fast and predictable per-
formance, a real-time operating system should enable an application pro-
grammer to specify certain “‘allocation attributes.” For example, an applica-
tion programmer might need to specify that a given program be memory
resident or that a given file be contiguous.

b. Application-directed scheduling: Applications should have the capability to
specify certain “scheduling attributes” that enable the operating system to
impose an effective ordering on tasks or events. The operating system should
take the scheduling attributes into account whenever contention or queueing
occurs.

The issue of exactly what the scheduling attributes should be is the topic of
considerable controversy in the research community. Some believe that
preemptive priorities are sufficient; others contend that the concept of priority
must be broken down into complementary aspects of “urgency” and “impor-
tance,” where urgency is meant to capture nearness of deadlines and “impor-
tance” is meant to capture criticality to the mission [Jensen 85]. A few go
further, introducing even more resource management attributes, and making
the scheduling problem even more complex.

c. Application-directed synchronization: The synchronization of concurrent
activities should be controllable by an application. For example, an applica-
tion should be able to specify whether operations (e.g., I/O, message passing)
are to be done synchronously or asynchronously. While asynchronous opera-
tioas introduce some complexity, they have been found to be useful in

A-4

real-time applications. The reasoning behind the provision of asynchronous
operations is that synchronous operations may unnecessarily impede the for-
ward progress of a path of execution.

3.2 TIMELY RESPONSE TO EVENTS

A real-time system must maintain its integrity with respect to the state of its
environment. This can be viewed as a requirement to maintain external consistency, i.e.,
consistency between the actual state of the environment and the real-time system’s per-
ceived state of the environment. At the same time, internal consistency must also be
maintained. That is, multiple concurrent tasks that constitute an application must have
accurate perceptions of the states of one another.

If occurrences that alter the state of the environment or the system itself are
viewed as events, then what is required is timely response to events. In other words, a
real-time operating system should be able to respond to both external and internal events
in a timely—both fast and predictable—manner; moreover, it should ensure that applica-
tions can also respond to events in a timely manner, through timely event notifications to
applications.

3.3 PREDICTABLE SERVICE TIMES AND OVERHEAD TIMES

To facilitate the predictability of the performance of a real-time application, the
execution times of operating system functions that the application explicitly invokes (via
system calls), as well as those that it implicitly invokes, should be bounded. The bounds
should not greatly exceed the means; otherwise, excessive resources may have to be dedi-
cated to the application to assure acceptable performance.

3.4 TIME SERVICES

A real-time operating system should provide services that make time visible and
accessible to applications. For example, applications should be able to set the time, read
the time, and schedule events to occur at specified times, such as at periodic time inter-
vals.

4. EXISTING REAL-TIME OPERATING SYSTEMS
4.1 TABLE-DRIVEN REAL-TIME EXECUTIVES: CYCLIC EXECUTIVES

Cyclic executives are designed to support a periodic application development
framework. They are discussed in depth by Baker and Shaw in the June 1989 issue of
Real-Time Systems [Baker and Shaw 89]. Briefly speaking, a cyclic executive has a single
responsibility: to interleave the executions of periodic tasks according to a fixed,

A-5

predetermined schedule. The schedule is often specified in a static scheduling table,
which indicates which pieces of which tasks are to be executed in what order during each
time frame of each scheduling cycle. The scheduling table is formulated by the applica-
tion developer as a key part of the application development. The formulation of a
scheduling table can be viewed as a bin-packing problem, in which tasks are fit into cycles
in such a way that all deadlines can be met.

The real-time services and features described above are addressed by cyclic exe-
cutives as follows:

a. Mission-driven/application-directed resource management: Resource
management decisions are deterministic. They are dictated by the application
developer via the scheduling table.

b. Timely response to events: Asynchronous events and aperiodic tasks typically
are handled by mechanisms such as polling or background processing. Timely
response can be achieved through frequent polling.

c. Predictability of service times and overhead times: A cyclic executive is
essentially a table-driven scheduler. Predictability of service times is a non-
issue, since services (other than scheduling) are not offered. Predictability of
overhead can be accomplished by straightforward measurement, since the
only function of the cyclic executive—scheduling—is driven by static schedul-
ing tables, which capture scheduling decisions made off-line by the application
developer.

d. Time services: Periodic timer interrupts are vital to cyclic executives. They
dictate frame boundaries and synchronize the system to the scheduling table.

4.2 PRIORITY-DRIVEN REAL-TIME EXECUTIVES

Stankovic and Ramamritham offer a concise description of today’s priority-
driven real-time executives in a paper presented at the 1987 Real-Time Systems Sympo-
sium [Stankovic and Ramamritham 87]. In the paper, they characterize most existing
real-time executives or kernels as being “stripped down and optimized versions of
timesharing operating systems.” This is not surprising, given the previously noted fact
that operating system research and development over the past two decades has been
focused on the interactive or timesharing domain. In effect, familiar operating system
concepts have been and are continuing to be used to construct new operating systems that
can meet the unique demands of real-time computing. The two major design objectives
are (1) minimization of overhead, which is the motivation behind the effort to “strip
down” general-purpose timesharing operating systems, and (2) speed, which is the

A6

motivation behind optimization efforts.

Stankovic and Ramamritham go on to enumerate several specific characteristics
of today’s priority-driven real-time executives [Stankovic and Ramamritham 87, p.146].
Below, we quote those characteristics in terms of our four general categories of real-time
services and features:

a. Mission-driven/application-directed resource management: (1) priority
scheduling, (2) the ability to lock code and data in memory, and (3) the pres-
ence of special sequential files that can accumulate data at a fast rate.

b. Timely response to events: (1) the ability to respond to external interrupts
quickly, (2) the minimization of intervals during which interrupts are disabled,
(3) multi-tasking with task coordination being supported by features such as
mailboxes, events, signals, and semaphores.

c. Predictability of service times and overhead times: (1) a small size (with its
associated minimal functionality), (2) fixed or variable sized partitions for
memory management (no virtual memory), and (3) a fast context switch.

d. Time services: (1) support of a real-time clock, (2) primitives to delay tasks
for a fixed amount of time and to pause/resume tasks, and (3) special alarms
and timeouts.

It should be noted that placement of the characteristics under the four service/feature
categories involved some judgment calls, because some of the characteristics play roles in
more than one category. For example, fast context switching contributes to timely
response to events, as well as to predictability.

Priority-driven real-time executives as described above can support aperiodic
real-time application development frameworks, as well as priority-driven periodic frame-
works such as the rate monotonic framework.

4.3 PRIORITY-DRIVEN REAL-TIME OPERATING SYSTEMS

In this section, we discuss a class of real-time operating system that is closely
related to the above class. The distinction between the two is that the real-time executives
discussed above are intended solely for real-time computing, whereas the real-time
operating systems of this section are, in a sense, general-purpose operating systems capa-
ble of meeting the demands of real-time computing.

2. This characteristic is quoted from a revised list that appears in the IEEE Computer Society Press’s
Twtorial on Hard Real-Time Systems [Stankovic and Ramamritham 88, p. 4].

A-7

Rather than speaking in generalities, we focus on the IEEE P1003.4 Realtime
Extension for Portable Operating Systems (POSIX 1003.4). It is useful to do so, because
POSIX 1003.4 arguably captures the state-of-the-practice in real-time operating systems.

Since POSIX 1003.4 is described in depth in Appendix B of this document, we
simply put it into context here, by presenting its interfaces in terms of our four real-time
service/feature categories:

a.

Mission-driven/application-directed resource management: In this vein,
POSIX 1003.4 offers (1) preemptive, dynamic priority-driven scheduling,
(2) process memory locking, (3) real-time files, (4) asynchronous 1/0, and
(5) synchronized I/O. Additionally, POSIX 1003.4 attempts to take priorities
into account in every interface in which contention or queueing can occur.

Timely response to events: To support this, POSIX 1003.4 offers (1) interpro-
cess communication in the form of shared memory and semaphores, as well as
in the form of message passing, (2)asynchronous event notification, and
(3) threads, or lightweight processes.

Predictability of service times and overhead times: The POSIX 1003.4 philo-
sophy here is to define metrics for each of its interfaces and to require vendors
to report the values of the metrics. Thus, standard metrics are defined, but
standard values are not.

Time services: POSIX 1003.4 provides interfaces to system-wide timers and
per-process interval timers that make time visible to processes and enable
processes to schedule timer events in a variety of useful ways, including
periodically.

POSIX 1003.4, as well as priority-driven real-time operating systems in general,
can support aperiodic real-time application development frameworks, as well as priority-
driven periodic frameworks such as the rate monotonic framework.

REFERENCES

Baker and

Shaw 89

Baker, T.P. and A. Shaw. 1989. The Cyclic Executive Model and Ada.
Real-Time Systems 1, 1 (June), 7-25.

A-8

Jensen 85

Liu and Lay-
land 73

Locke 86

Sprunt 89

Stankovic 88

Stankovic 89

Stankovic and
Ramamritham
87

Stankovic and
Ramamritham
88

Jensen, E.D., C.D. Locke, and H. Tokuda. December 1985. A Time-
Driven Scheduling Model for Real-Time Operating Systems. In
Proceedings of IEEE Real-Time Systems Symposium, 112-122.

Liu, C.L. and J.W. Layland. 1973. Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment. Journal of the
ACM 20, 1 (January), 46-61.

Locke, C. Douglass. 1986. Best-Effort Decision Making for Real-Time
Scheduling. Ph.D. Diss. Pittsburgh, PA: Carnegie Mellon University.

Sprunt, B., L. Sha, and J. Lehoczky. 1989. Aperiodic Task Scheduling
for Hard-Real-Time Systems. Real-Time Systems 1, 1 (June), 27-60.

Stankovic, J.A. 1988. Misconceptions About Real-Time Computing:
A Serious Problem for Next-Generation Systems. IEEE Computer 21,
10 (October), 10-19.

Stankovic, J.A., W.A. Halang, and M. Tokoro. 1989. Editorial. Real-
Time Systems 1, 1 (June), 5-6.

Stankovic, J.A. and K. Ramamritham. December 1987. The Design
of the Spring Kernel. In Proceedings of IEEE Real-Time Systems Sym-
posium, 146-157.

Stankovic, J.A. and K. Ramamritham. 1988. Hard Real-Time Sys-
tems. Washington, D.C.: Computer Society Press of the IEEE.

A-9

APPENDIX B

OVERVIEW OF THE IEEE P1003.4 REALTIME EXTENSION TO POSIX!

1. INTRODUCTION

POSIX (Portable Operating System Interface) is the product of IEEE Project
P1003, which is sponsored by the Technical Committee on Operating Systems of the
IEEE Computer Society. Actually, P1003 consists of a family of working groups, one of
which is the P1003.4 Realtime Extension Working Group. The POSIX working groups
are defining interface standards based on UNIX.? All of the POSIX standards are
intended to facilitate application portability at the source code level. While UNIX has
become the operating system of choice on a large number of widely varying hardware
bases, its proliferation of versions in fact impedes application portability. The POSIX
working groups are chartered to remedy this situation by defining a standard operating
system interface and environment based on UNIX. Notably, POSIX has been adopted as
a key component of the Applications Portability Profile being developed by the National
Institute of Standards & Technology (NIST).

The first PGSIX working group, P1003.1, has produced a standard now known as
IEEE Std 1003.1-1988, or POSIX.1 for short. POSIX.1 defines the interfaces to system
services, including process management, signals, time services, file management, pipes,
file I/O, and terminal device management. POSIX.1, in the UNIX tradition, is oriented
toward the interactive time-sharing computing domain. Using POSIX.1 as a baseline, the
P1003.4 Working Group is extending application portability to the challenging realtime
computing domain.

The P1003.4 Working Group has achieved a broad base of participation and sup-
port. It includes over 175 individuals, representing over 70 organizations, including Intel,
IBM, AT&T, Concurrent, DEC, General Motors, Hewlett-Packard, Motorola, NASA,
Sun Microsystems, and Unisys. Once accepted as a standard, the P1003.4 realtime
extension to POSIX is expected to become both widely available and widely utilized.

There are several other POSIX working groups, including P1003.0 (POSIX
Guide), P1003.2 (Shell and Utilities), P1003.3 (Test Methods), P1003.5 (Ada Bindings),
P1003.6 (Security), P1003.7 (System Administration), P1003.8 (Network Services), and

1. This paper appeared in Real-Time Systems Newsletter 6, 1 (Wiater 1990), 9-18. The co-authors were
William M. Corwin of Intel, C. Douglass Locke of IBM, and Karen D. Gordon of IDA.

2. UNIXis a registered trademark of AT&T.

B-1

P1003.9 (FORTRAN Bindings). In addition, there is a new standards committee,
P1201.1, defining a standard windowing interface based on X Windows. The P1201.1
interface is being designed to work with any operating system; in particular, it is not
dependent on POSIX, although it is anticipated that it will often be used in conjunction
with POSIX.

The development of the P1003.4 draft standard realtime extension to POSIX has
proceeded according to several important design guidelines. First, the P1003.4 draft
standard, like POSIX.1, defines an application program interface to an underlying set of
operating system functions; it does not specify the structure or functions of the underlying
operating system beyond the specific functionality visible at the application program
interface level. Second, the P1003.4 draft standard, again like POSIX in general, is
intended to support application portability at the source code level and, in particular, not
at the object code level. Third, the P1003.4 Working Group, in its charter, is constrained
to make “the minimum syntactic and semantic changes or additions to the POSIX.1 stan-
dard in order to support portability of applications with realtime requirements.” Fourth,
in defining the P1003.4 interfaces, the P1003.4 Working Group has been careful to rely
upon proven technology; consequently, the P1003.4 draft standard reflects the state of the
practice in realtime operating systems. Fifth, recognizing the significance of performance
in the realtime computing domain, the P1003.4 Working Group has defined standard per-
formance metrics but not mandatory values for the metrics.? The idea is that vendors will
be required to document the values of the standard metrics for their implementations.
Then customers will be able to identify and acquire an implementation that meets their
specific performance and cost requirements.

2. P1003.4 INTERFACES

In the view of the P1003.4 Working Group, the fundamental difference between
capabilities required in realtime systems and those typically provided in time-sharing sys-
tems centers on the need of realtime systems for resource management that can support
predictable (i.e., bounded) response times. In time-sharing systems, resource manage-
ment objectives are efficiency and fairness. In realtime systems, on the other hand,
resources must be managed so that time-critical application functions can control their
response time, possibly resulting in delay or even starvation for non-time-critical applica-
tion functions. Resources most frequently causing problems for realtime applications are
processors, clocks, I/O interfaces and devices, communications, and memory. There-
fore, the P1003.4 Working Group has focused its initial efforts on defining application

3. The reader is referred to the P1003.4 draft standard for listings and descriptions of specific metrics.
Due to space limitations, we refrain from citing them here.

B-2

interfaces in the following eleven functional areas:

IR
k.

Timers

Priority Scheduling

Shared Memory

Realtime Files

Semaphores

Interprocess Communication Message Passing
Asynchronous Event Notification
Process Memory Locking
Asynchronous Input and Output
Synchronized Input and Output
Threads

A brief description of each of these interfaces is given below.

2.1 TIMERS

The P1003.4 draft standard defines interfaces to system-wide timers and to per-
process interval timers that make time visible to processes and enable processes to sched-
ule timer events in a variety of useful ways, including periodically. The data structure that
is used by these interfaces to represent time provides for nanosecond resolution.

The P1003.4 timer facilities provide the following functions:

a.

Setting the value of, getting the value of, and getting the resolution of a speci-
fied system-wide timer.

Creating and destroying a per-process interval timer, based upon a specified
system-wide timer and a specified delivery mechanism (signals, events, or
implementation specific). If events are specified, then the application pro-
grammer defines an event and writes an event trap routine in accordance with
the P1003.4 asynchronous event notification facilities, which are described
later in this section.

Setting the value of, getting the value of, and getting the resolution of a speci-
fied per-process interval timer. The “value” of an interval timer consists of

B-3

two parts: (1) timer interval and (2) remaining time to the next timer expira-
tion. The remaining time to the next timer expiration can be set to a given off-
set from the current time (as known by the associated system-wide timer), or
to a given absolute value. The timer interval, if nonzero, indicates that peri-
odic timer expirations are to begin occurring after the initial timer expiration,
where the period is equal to the specified timer interval.

2.2 PRIORITY SCHEDULING

The P1003.4 Working Group views preemptive, dynamic priority-driven schedul-
ing as being fundamental in realtime systems. The P1003.4 draft standard defines two
variants of preemptive, dynamic priority-driven scheduling. The variants are dis-
tinguished by the way in which processes of equal priority are scheduled. In the first vari-
ant, ready processes of equal priority are scheduled according to a first-in-first-out
(FIFO) policy. In the second variant, ready processes of equal priority are scheduled
according to a round-robin (RR) policy, with a specified time slice.

The P1003.4 scheduling facilities provide the following functions:
a. Setting the priority of and getting the priority of a specified process.

b. Setting the “scheduling policy” of and getting the scheduling policy of a speci-
fied process. The scheduling policy can be (1) preemptive, dynamic priority-
driven, using FIFO within a priority level, (2) preemptive, dynamic priority-
driven, using RR within a priority level, with a specified time slice, or (3)
implementation specific.

2.3 SHARED MEMORY

The P1003.4 Working Group views the shared memory paradigm as being an
important, traditional, high-performance mechanism for interprocess communication in
realtime systems. The P1003.4 draft standard supports shared memory objects as
“shared memory special files,” i.e., objects named within the standard file system name
space.® It enables shared memory special files to be mapped into a process’s virtual
address space. Semaphores are envisioned as a mechanism for synchronizing access to
shared memory.

4. For reasons including uniformity and convention, all application-created objects that can be shared by
two or more application processes are named within the standard POSIX.1 file system name space. In
addition to shared memory special files, these objects include semaphore special files and message
queue special files. In each of these cases, the use of the file system name space does not imply that the
facilities (i.e., shared memory, semaphore, or message passing) need be implemented within the file
management portion of the underlying operating system.

B4

The P1003.4 shared memory facilities provide the following functions:
a. Creating a shared memory special file.
b. Opening and closing a specified shared memory special file.

¢. Mapping and unmapping a specified segment of a specified shared memory
special file into a process’s virtual address space at a specified address.

The shared memory facilities are designed to be extensible, in that common glo-
bal objects other than shared memory special files can be mapped into a process’s
address space through the shared memory facilities, in an implementation-specific way.
The only restriction is that the objects be named within the file system name space. One
specific extension singled out in the P1003.4 draft standard as being particularly relevant
in the realtime computing domain is to enable a process to utilize the shared memory
facilities to map sections of physical address space into its virtual address space.

2.4 REALTIME FILES

The P1003.4 Working Group views the capability of performing 1I/O operations
with deterministic high performance as being crucial in realtime systems. It recognizes
that contiguous filc s are a traditional mechanism for providing deterministic high-perfor-
mance I/O, since most realtime systems utilize rotating magnetic disks as their file storage
media. However, rather than providing a specific interface to contiguous files, it provides
a more general interface to “realtime files.” An implementation may choose to imple-
ment realtime files through contiguous files, but it is not forced to do so. An implementa-
tion is free to take advantage of advanced or non-traditional media that can provide
deterministic high performance without relying on contiguity, in the framework provided
by the P1003.4 realtime file facilities.

The approach that the P1003.4 draft standard takes to realtime file support is to
make some critical performance-related aspects of the operating system’s implementa-
tion of files and I/O not only application-visible but also to some extent application-con-
trollable. In particular, an application program can offer “hints” relating to characteris-
tics of the application, which the operating system can take into account in making its
resource management decisions.

The P1003.4 realtime file facilities provide the following functions:

a. Creating a realtime file. In doing so, a process communicates to the system
what it perceives as being desirable attributes of the realtime file, and it
receives in return information on the actual attributes of the file as created by
the system. As stated in the P1003.4 draft standard, it is the responsibility of

B-5

the application to compare all of the requested and returned attributes in
order to ensure that a sufficient set have been honored.

b. Communicating to the system the desirable attributes of a specified (previ-
ously created) realtime file. Again, the specification of desirable attributes is
just a request to the system. The process receives in return information on the
actual attributes, and must decide how to proceed based on that information.

c. Getting the actual attributes of a specified realtime file or of realtime files of a
specified file system.

d. Obtaining a suitably aligned buffer of a specified size either from a specified
data area or from the system.

Performance-related implementation attributes include (1) amount of data to be
transferred in realtime I/O operations, (2) space reserved for a file or file system, (3)
whether or not file is to be extended, and (4) size of extents.

Hints, or advisory information, that an application can offer the operating system
include the following: (1) file allocation should be optimized for sequential access, which
can be taken to mean that contiguous allocation is desirable, (2) remaining file space
should be zeroed upon truncation of the file, (3) reaccess of currentiy accessed data is
unlikely, so a least recently used (LRU) caching policy might not be advantageous, (4)
read-ahead might not be advantageous, and (5) application is doing its own caching, so
system caching might not be advantageous.

2.5 SEMAPHORES

The P1003.4 draft standard adopts the binary semaphore as the basic means of
process synchronization. It notes that the binary semaphore is a “minimal” synchroniza-
tion mechanism and that other mechanisms such as counting semaphores and monitors
can be implemented on top of the binary semaphore. It supports semaphores as “sema-
phore special files,” i.e., objects named within the file system name space.

The P1003.4 semaphore facilities provide the following functions:
a. Creating a semaphore special file.
b. Opening and closing a specified semaphore special file.

c. Performing a P operation [Dijkstra 68] on a semaphore represented by a
specified semaphore special file. The P operation can be invoked either
unconditionally or conditionally. When invoked conditionally, the P operation
is performed only if the semaphore is in an unlocked state, in which case the P

B-6

operation causes the semaphore to enter a locked state and the invoking pro-
cess to become the holder of the semaphore. Blocked processes are granted
the semaphore in priority order, with FIFO ordering for processes of equal
priority.

d. Performing a V operation on a semaphore represented by a specified sema-
phore special file. The V operation can be invoked either unconditionally or
conditionally. When invoked conditionally, the V operation is performed only
if other processes are currently blocked by the semaphore.

Since semaphores have been defined as special files, it is possible for them to be
opened by two processes that do not share physical address space if a distributed file sys-
tem is utilized. The P1003.4 draft standard takes the following position on this point
[P1003.4/Draft 8, p. 28]: “Semaphores are only required to operate when the processes
using a common semaphore have the same physical address space. If a distributed file
system is used, a mechanism shall be provided to ensure that only processes that have the
same physical address space can access the semaphore.”

2.6 INTERPROCESS COMMUNICATION MESSAGE PASSING

The P1003.4 draft standard supports message passing as a form of interprocess
communication. The P1003.4 Working Group views the capability of passing messages
with both high and deterministic performance as being crucial in realtime systems. The
draft standard defines message passing in terms of “message queue special files,” i.e.,
objects named within the file system name space. Message queue special files can be
opened for use by multiple sending and receiving processes.

The P1003.4 message passing facilities provide the following functions:
a. Creating a message queue special file.
b. Opening and closing a specified message queue special file.

c. Sending a message to a specified message queue special file. The message to
be sent is identified by a pointer (to a buffer in which the message is held) and
a length. If the length is zero, then the pointer itself is the message, which
facilitates an optimization for very short messages. This optimization entails
passing the contents of the pointer to the receiver as the event value field in the
asynchronous event notification associated with the message. This is an
optimization in that the asynchronous event notification not only notifies the
receiver of a message receipt, but also passes the message as part of the notifi-
cation. It should be noted that the pointer’s worth of information can indeed

B-7

be a pointer, for example, to a buffer in shared memory. The sender can spec-
ify that the message is to be sent either synchronously, in which case the
sender blocks until the message is delivered to the receiver, or asynchronously,
in which case the sender does not block. In the asynchronous case, the sender
can further specify whether or not asynchronous event notification is to occur
upon receipt. If the message is held in a buffer (as opposed to being a very
short message entirely contained in a buffer pointer), then the sender can
specify how the contents of the buffer are to be transferred—either by
transferring control of the buffer to the receiver, by copying the contents of the
buffer into an intermediate system buffer, or by granting access to the buffer to
the receiver so that the receiver can copy the contents. Finally, the sender can
associate a “type” with the message, which the receiver can use to selectively
receive messages. The type can be used to prioritize messages, for example.

d. Sending a message to a specified list of message queue special files, thus pro-
viding a multicast capability.

e. Receiving a message from a specified message queue special file. The
receiver can specify that the message is to be received asynchronously via an
asynchronous event notification, or synchronously. If synchronous receipt is
specified, then the receiver can further specify that the receipt is to be block-
ing (the receiver blocks until a message is available) or conditional (the
receiver does not block, but only receives a message if one is available). The
“type” field can be used to selectively receive messages in one of three ways:
(1) FIFO delivery, (2) prioritized delivery, with FIFO for messages of equal
priority (i.e., type), and (3) FIFO delivery of a specified type.

f. Allocating (by the sender) and freeing (by the receiver) a system-provided
“message buffer” to hold the message, thus minimizing message copying.

g- Setting the values of and getting the values of attributes of a specified message
queue special file. Attributes include the maximum number of messages,
maximum number of bytes, whether or not to “wrap” new messages over old
ones, etc.

h. Getting the status of a specified message queue special file.
2.7 ASYNCHRONOUS EVENT NOTIFICATION

The P1003.4 Working Group recognizes the importance of asynchronous event
notification. Moreover, it recognizes the shortcomings of the POSIX.1 signal facilities as
a mechanism for asynchronous event notification in realtime systems: (1) signals do not

B-8

queue, so if two arrive before the first is handled, then the first will be lost, (2) signals
cannot pass data, so they cannot readily indicate specific sources of events or errors, and
(3) the number of possible user-defined signals is insufficient for many applications. The
P1003.4 draft standard strives to overcome these deficiencies and to define a general-pur-
pose, uniform, reliable interface that has both deterministic and high performance.

The P1003.4 asynchronous event notification facilities consist of the following: (1)
event definition data structure, (2) event trap routine function prototype definition, and
(3) the functions cited below. In defining an event, a user specifies an event trap routine,
an application-defined value to be passed to the event trap routine identifying the source
of the event, the event class (i.e., a grouping of related events, including a priority in case
of multiple event occurrences) within which the event trap routine executes, and the event
class mask to be in effect during execution of the event trap routine.

Examples of asynchronous events include system-defined events specified in the
P1003.4 draft standard, such as asynchronous I/O completion, timer expiration, and mes-
sage arrival, as well as user-defined events. It shouid be noted that the P1003.4 asynchro-
nous event notification facilities are purposefully not intended to support interprocess
communication, although they are used as a delivery mechanism by the message-passing
facilities.

The P1003.4 asynchronous event notification facilities provide the following func-
tions:

a. Changing or examining the event class mask of the invoking process. Event
classes that are included in the mask are blocked from being delivered via
asynchronous event trap routines. Events are queued if they occur when
masked.

b. Waiting for asynchronous event notifications for specified event classes, in one
of two modes. In the first mode, the event processing is handled by the associ-
ated event trap routines; that is, the invoker is “enabling” the delivery of
asynchronous event notifications to their respective trap routines. In the sec-
ond mode, referred to as polling, the event processing is handled in-line; that
is, the event notification (i.e., event class and application-defined event value)
is delivered to the caller as part of the return from the invocation of the wait.
The caller can specify that the wait be one of the following: (1) zero, in which
case the caller does not wait, but only enables pending event notifications to
be delivered, (2) indefinite, or (3) subject to a specified timeout period.

B-9

c. Causing a specified application-defined event to be raised for the invoking
process.

d. Changing the number of queue entries to be used to hold events which have
been raised but not yet delivered to the invoking process.

e. Achieving reliable exits from event trap routines via non-local jumps.

f. Associating a specified signal with a specified event class. This is a desirable,
but not mandatory, capability that enables a deterministic delivery order to be
achieved for signals.

Event classes establish a prioritization for event notification delivery. That is, if
event notifications of different event classes are queued, then they are dequeued in order
of event class, and in FIFO order for event notifications of equal event class.

2.8 PROCESS MEMORY LOCKING

The P1003.4 draft standard supports the notion that a process should be able to
lock its address space, or specified regions thereof, into memory. Such a capability is
viewed as being crucial to deterministic high performance.

The P1003.4 process memory locking facilities provide the following functions:

a. Locking and unlocking specified regions of a process’s address space into
memory.

It should be noted that the process memory locking interface defined by P1003.4
enables processes to specify certain “logical” regions of their address space for locking.
These include the data region, the text region, the stack region, the shared memory
region, and the executable region. However, the P1003.4 Working Group recognizes that
some systems cannot support locking such memory regions separately; therefore, it makes
the locking of logical regions optional.

2.9 ASYNCHRONOUS INPUT AND OUTPUT

The P1003.4 draft standard provides a capability to perform I/O operations asyn-
chronously. The motivation is to allow processes to perform multiple I/O operations con-
currently with computations on I/O data.

The P1003.4 asynchronous I/O facilities provide the following functions:

a. Asynchronously reading and writing a specified file. Control returns to the
invoker when the read or write request has been initiated, or, at a minimum,
when it has been queued to occur. The invoker can define an event and

B-10

associate it with the asynchronous I/O operation, in which case the event is
raised upon completion of the operation. Alternatively, the invoker can poll
for completion, by checking a field in the control block specified for the I/0
operation. The invoker can also specify an asynchronous I/O operation prior-
ity to be used in determining the order of execution of asynchronous I/O
operations with respect to one another. The significance of the priority is
implementation specific.

b. Initiating a list of I/O requests with a single system call.

c. Cancelling a specified asynchronous I/O request, or cancelling all asynchro-
nous /O requests to a specified file.

2.10 SYNCHRONIZED INPUT AND OUTPUT

The P1003.4 Working Group recognizes that some applications, such as database
applications, may require assurance of I/O completion. The P1003.4 draft standard
refers to 1/O that is to be done with assurance of completion as “synchronized I/0.”

Two types of synchronization are defined in the P1003.4 draft standard:

a. Synchronized I/0 data integrity completion: Completion is defined to occur
for reads when data becomes available to the reading process. It is defined to
occur for writes when both the data and the file system information necessary
for retrieval of the data have been successfully transferred.

b. Synchronized 1/O file integrity completion: Completion is defined to occur
when, in addition to the above, all file system information relevant to the I/0
operation has been successfully transferred.

Data is said to be successfully transferred “when the corresponding 1/0 periph-
eral in some implementation-defined fashion assures that all data is readable on any sub-
sequent open of the file (even one that follows a system failure) in the absence of a failure
of the physical storage medium” [P1003.4/Draft 8, p. 12].

The P1003.4 synchronized I/O facilities provide the following functions:

a. Specifying that /O completion for a specified file is to be (re-)defined as
either synchronized I/O data integrity completion or as synchronized I/O file
integrity completion. A process can make this specification for a file that is
being opened (as part of the POSIX.1 open () function) or for one that is
already open (via the POSIX.1 fentl () function).

B-11

b. Requesting that all outstanding I/O requests for a specified file are to be
“completed” in accordance with the definition of either synchronized I/O data
integrity completion or as synchronized 1/O file integrity completion. The
request can be either synchronous (i.e., control returns to the invoking process
upon the completion of all the outstanding I/O operations) or asynchronous
(i.e., control returns when the request is queued). In the asynchronous case, a
specified asynchronous event notification will occur upon completion.

2.11 THREADS

The P1003.4 Working Group recognizes that for many applications, a fine-grained
concurrency model provides a more robust paradigm for time-critical processing than the
POSIX.1 process model. Such facilities, called variously light-weight processes or
threads [Cooper and Draves 87] [McJones and Swart 87], allow concurrency of portions
of the application to be defined within a POSIX process, allowing such concurrent func-
tions to share memory and other resources. The thread mechanism has been identified as
being particularly important in shared memory parallel processors and for Ada programs
using the Ada tasking facility (refer to P1003.5 Ada Bindings Working Group).

The P1003.4 thread facilities provide the following functions:

a. Creating or detaching a thread, identifying a user-defined function to be exe-
cuted concurrently with the current thread of control as a thread.

b. Synchronizing two or more threads sharing a common resource using a mutex
(i.e., binary semaphore) or condition [Hoare 74].

c. Setting the scheduling policy and/or priority for a thread. The same schedul-
ing paradigm defined under the P1003.4 Priority Scheduling functions is sup-
ported for threads. The semantics specified for thread scheduling provide
that all threads compete equally based on their priorities; scheduling is not
based on the enclosing process’s priority.

d. Delaying a thread by a specified amount of time.

The P1003.4 draft standard also defines the mapping of events and signals to
threads, as well as the effect of threads on POSIX system call error returns (i.e., errno).
A consequence of using threads is that any previously defined system call that results in
blocking the caller is modified to result in blocking only the calling thread.

B-12

3. CONCLUDING REMARKS

In summary, the interface defined by the P1003.4 draft standard offers several
services and features that are considered essential in the realtime computing domain.
First, it offers application-directed resource management in the form of preemptive,
dynamic priority-driven scheduling, process memory locking, realtime files, asynchronous
I/O, and synchronized I/O. Moreover, resolution of resource contention is consistently
accomplished not at the discretion of the operating system, but at the direction of the
application, through application-specified attributes such as process priority. For
example, in addition to supporting preemptive, dynamic priority-driven scheduling for
resolution of processor contention, the draft standard makes the following provisions: (1)
processes blocked at semaphores are dequeued in priority order, (2) messages have a
type field that can be used to establish priorities for message delivery, (3) events are
grouped into event classes that can be used to establish priorities for asynchronous event
notification delivery, (4) and asynchronous I/O operations can be assigned priorities.
Also consistently throughout the P1003.4 draft standard, optional synchronization (i.e.,
process blocking) is offered. That is, a process can choose not to block when invoking an
operation that might incur blocking. A conspicuous example is asynchronous I/Q. Other
examples include asynchronous message sending, asynchronous message receiving, con-
ditional synchronous message receiving, and conditional invocation of semaphore opera-
tions.

Second, the P1003.4 draft standard strives to support timely response to internal
and external events and errors. It offers (1) high-performance interprocess communica-
tion in the form of shared memory and semaphores, as well as in the form of message
passing, (2) reliable, high-performance asynchronous event notification, and (3)
threads, or lightweight processes.

Third, the P1003.4 draft standard addresses the issue of predictability of system
service times and overhead times by defining standard metrics for each of its interfaces
and requiring vendors to report the values of the metrics.

Fourth, as described in the previous section, the P1003.4 draft standard defines
realtime-oriented timer facilities that provide interfaces to fine-resolution system-wide
timers and per-process interval timers.

3.1 FORM OF THE P1003.4 STANDARD

The P1003.4 interfaces are system interfaces; as such, they constitute an exten-
sion to POSIX.1. However, the extension is not mandatory. The P1003.4 draft standard
will be balloted as a set of optional interfaces.

B-13

To facilitate portability of realtime applications, the P1003.4 Working Group
plans to define an Application Environment Profile (AEP) for realtime.’ The Realtime
AEP will single out some of the P1003.4 interfaces as being mandatory for the realtime
computing domain. Strictly conforming realtime applications, namely, ones that utilize
only mandatory interfaces, will be portable across operating systems that conform to the
Realtime AEP. Participation in the P1003.4 Standardization Process

3.2 PARTICIPATION IN THE P1003.4 STANDARDIZATION PROCESS

There are three avenues of participation in the P1003.4 standardization process:
(1) the Working Group, (2) the Balloting Group, and (3) independent reviews.

The Working Group is responsible for developing a draft standard. To accom-
plish this objective, it holds open meetings on a quarterly basis. The schedule for upcom-
ing meetings is as follows:

January 8-12, 1990: New Orleans, LA
April 23-27, 1990: Salt Lake City, UT
July 16-20, 1990: Danvers, MA

October 15-19, 1990: Seattle, WA

The Balloting Group is responsible for reviewing and approving the draft stan-
dard prepared by the Working Group. Only when a specific percentage of Balloting
Group members approves the draft does it become an IEEE standard. Participation in
the Balloting Group is open to any member of the IEEE or the IEEE Computer Society.
However, it is conventional practice that members of the Balloting Group also participate
in Working Group meetings or independent reviews.

Independent reviews can be offered by any interested individual or organization
by obtaining a copy of the current draft and providing comments in a form suitable for
consideration by the Working Group.

3.3 STATUS OF THE P1003.4 STANDARD

The P1003.4 Working Group has been meeting quarterly since September 1987.
Prior to that, many individuals now in the group had been meeting under the auspices of
the /usr/group® Technical Committee Realtime Working Group.

As of December 1988, the Working Group had a complete draft of all functions
intended for balloting. Since then, it has further refined and clarified the draft. The draft

5. The AEP concept is being considered by P1003 in general as a means of enabling operating systems to be
tailored to specific application domains without sacrificing (intra-domain) application portability.
6. /usr/group is the International Network of UNIX System Users, an association of UNIX users.

B-14

has undergone extensive reviews by other groups, and the Working Group has resolved
issues raised by those reviews.

The Working Group plans to begin the balloting process in January 1990 and to
complete it by September 1990. It is anticipated that issues will be raised during the bal-
loting process that require resolution before the draft can be declared an IEEE standard.
The resolution process might entail a second round of balloting, which could last up to
nine more months.

REFERENCES

[Cooper and Draves 87] Cooper, E.C. and R.P. Draves, “C Threads,” Draft Paper,
Department of Computer Science, Carnegie Mellon University, 2 March 1987.

[Dijkstra 68] Dijkstra, E.W., “Cooperating Sequential Processes,” Programming
Languages (F.Genuys, ed.), Academic Press, 1968, 43-112.

[Hoare 74] Hoare, C.A.R., “Monitors: An Operating System Structuring Concept,”
Communications of the ACM 17, 10 (October 1974), 549-557.

[McJones and Swart 87] McJones, P.R. and G.F. Swart, Evolving the UNIX System
Interface to Support Multithreaded Programs, Research Report 21, DEC Systems
Research Center, September 1987.

[P1003.4/Draft 8] P1003.4 Working Group, Realtime Extension for Portable Operating
Systems, P1003.4/Draft 8, Technical Committee on Operating Systems, IEEE
Computer Society, IEEE, August 1989.

B-15

APPENDIX C

TRADING PRECISION FOR TIMELINESS:
AN APPROACH TO THE DEVELOPMENT OF ROBUST REAL-TIME SYSTEMS

1. INTRODUCTION

Real-time systems are systems whose correctness depends not only on the numerical
integrity of a computation, but also on the time at which the computation is completed.
Real-time systems have been traditionally difficult to design, and nearly impossible to verify
because of the added complexity inherent in the timing interactions. In this paper, we
address several new methods for scheduling real-time tasks by softening the requirements
for numerical correctness. These methods have already met with some success, and may
result in the ability to design and build systems that satisfy the timing constraints and have
rigorously provable performance characteristics.

1.1 STRATEGIC DEFENSE SYSTEM REAL-TIME COMPUTING REQUIRE-
MENTS

The real-time systems that constitute the Strategic Defense System (SDS) must satisfy
at least three somewhat contradictory criteria. First, the systems must exhibit good behav-
jor in overload situations. This means that the system must degrade gracefully as overload
prevents certain deadlines from being met. A system that crashes helplessly on the first hit
has little military value. Second, the system must perform predictably. Commanders must
be able to make decisions with confidence that the system will be able to carry out the
mission. Lastly, the system must be cost effective, and make the most use of the resources
expended.

1.1.1 Overload Behavior

Good behavior under overload is important in battle situations where it is likely that the
system will be heavily stressed. Penetration strategies may overload the system; equipment
may be lost to random failure or attack; and communications may be delayed or denied. It
is important that the system remain resilient under such stresses and maintain acceptable
levels of performance.

C-1

1.1.2 Predictability

Aside from grace under pressure, system responses to fluctuations under stress must
be well understood. That is, the expected performance under a wide range of stressful
operating conditions must be predictable. This is important not only for commanders in an
operational sense, but for political reasons as well. In the operational sense, commanders
must be able to make informed choices about tactics and strategy when the system is
stressed beyond its normal operating limits. In the political sense, funding decisions may
well depend, in part, on the confidence that designers have that the system will be able
to perform its mission in many situations. This kind of predictability requires a level of
confidence in system performance in a variety of situations that is not presently possible
with real-time designs.

Predictability is also important in the design phase as it allows engineers to make intel-
ligent design choices. Knowing that a certain design has inherent predictability traits may
allow designers to build more cost effective systems that more closely match operational
requirements with a minimum of overbuild.

1.1.3 Cost Effectiveness

Cost effectiveness refers to attaining the highest levels of reliability and system per-
formance with the least cost. Present approaches to reliability often rely on brute force
redundancy, with the required performance often achieved by excessive overbuild. Given
the projected cost and scale of the SDS, this reliance on massive hardware is neither prac-
tical or desirable. Aside from the obvious cost of redundant computing systems, additional
penalties would be incurred due to the space based environment. These include additional
power supplies, shielding, and associated lift costs. For the SDS, research should center on
attaining high levels of reliability and performance without resorting to excessive redun-
dancy, or overbuild.

1.2 MEETING THE REQUIREMENTS

These general SDS requirements can be described in terms of real-time systems. Good
overload performance can be expressed as the ability to recover from missed deadlines by
ensuring that the deadlines missed are the least important ones and by avoiding useless
work. Such robust systems are able to manage missed deadlines to some degree without
catastrophic consequences. Predictability translates into guarantees that can be made con-
cerning the performance of the system. Lastly, cost effectiveness translates to the cost of
the hardware required to do the job, and the percentage of time that the hardware sits idle.
The goal is to minimize excess resources required to meet all other criteria.

C-2

Unfortunately, these three criteria have been difficult to attain in real-time systems.
Good overload performance has traditionally come at the expense of lower processor uti-
lization using the rate monotonic approach [Liu and Layland 73]. Algorithms that achieve
optimal processor utilization, such as deadline driven algorithms, may not degrade grace-
fully under overload. Finally, performance under stress cannot always be guaranteed, and
has been traditionally addressed by exhaustive testing with the hope that any flaws would
be uncovered.

In the past, designers have worked around requirements incompatibilities by “soften-
ing” one or more operational criteria. In an ideal system, a designer strives for a system
that simultaneously provides efficient processor utilization, while maintaining temporal and
computational integrity. For SDS standards, the system should also be predictable in the
sense that the performance is rigorously provable or verifiable.

While this list (i.e., high utilization, temporal integrity, computational integrity, and
predictability) represents a difficult goal, softening any of the criteria does yiel ome de-
sign flexibility. For example, softening the utilization requirement by allowing less than
100% processor utilization yields the so-called rate monotonic algorithm. Liu and Layland
[Liu and Layland 73] show that rate monotonic scheduling allows one to prove deadline
satisfaction for a wide range of loads, with deadlines being missed under overload in a pre-
dictable fashion. Temporal integrity can be softened by recognizing that timing constraints
can take forms other than hard pass/fail deadlines. This yields the so-called soft-deadline
approach that has been successful in some situations where late computations can still be
of some use.

It is also possible to soften the remaining two criteria. Computational integrity can be
softened by trading computational accuracy for running time during periods of overload.
This allows all deadlines to be met, although the system may operate somewhat less precisely
due to inaccuracies. Predictability can be softened by allowing probabilistic performance
guarantees to replace absolute performance guarantees. These probabilistic performance
guarantees can be a result of stochastically defined workloads (i.e., interarrival times), or
probabilistic guarantees on algorithmic performance such as those attainable for Monte
Carlo or Las Vegas algorithms.

In the spirit of the soft-timing approach, these new approaches may be referred to as
the soft-accuracy and soft-guarantee approaches, respectively. In this paper, we address the
soft-accuracy approach for task systems where all arrival times and deadlines are assumed
to be fixed. An issue involving the soft-guarantee approach under rate monotonic scheduling
is addressed in Appendix D.

C-3

The remainder of this paper addresses two methods under the soft-accuracy approach
that attempt to provide real-time scheduling systems with more tolerance to transient over-
load. The two methods are referred to as backup approximation and imprecise computation.
Section 2 introduces the concepts of soft accuracy and outlines the two methods. Sections 3
and 4 present a detailed overview of the methods, and survey several scheduling algorithms
for both periodic and general scheduling problems. Finally, Section 5 discusses applica-
tions that can benefit from soft-accuracy approaches. This section includes a discussion
of general algorithmic techniques that can be used to build applications amenable to the
soft-accuracy approach, and presents a specific application in distributed databases that
uses the imprecise computation method.

2. SOFTENING COMPUTATIONAL INTEGRITY

In this section, we discuss the problem of scheduling real-time tasks on a set of one or
more processors by softening computational integrity. The methods examined deal entirely
with systems where all deadlines, ready times, and interarrival times are assumed to be
fixed and have no stochastic variance. Methods are presented for dealing with both periodic
systems, and general systems over a finite number of tasks with known ready times. No
methods are presented for systems that exhibit stochastic (non-deterministic) interarrival
times or ready times, as these systems would necessarily require both soft accuracy and soft
guarantees.

In this section, we first introduce two models of scheduling real-time tasks, one for gen-
eral tasks sets and one for periodic tasks sets. We then present an introduction to scheduling
under soft-accuracy constraints and outline several different methods. The section concludes
with an example emphasizing the soft-accuracy approach.

2.1 BACKGROUND

A real-time computing system is one in which the correctness of the result depends not
only on the value returned, but on the time at which the result is produced. Such systems
are typically used when a device must react to its environment. In general, a set of stimuli
evokes system responses, and the system must react within a specified time period.

The physical stimulus-response problem described above can be abstracted into what is
referred to as the general deadline scheduling problem. In this model, the concepts of stimu-
lus, response, and timeliness are abstracted into sets of parameters that are more amenable
to analysis. The general deadline scheduling model consists of a 4-tuple (T, 7, R, D), where
T = {T\,Ts,...,Ts} is a set of tasks with running times * = {n, 73,...,7,}, ready times

C-4

R = {r,73,...,7s}, and deadlines D = {d;,dy,...,dn}. Precedence constraints < may also
be given to specify some partial ordering on the execution of the task set, where T; < T;
indicates that task T; must complete before task T; can be run.

The abstraction centers around modeling system responses as tasks. When a stimulus
is detected the system reacts by scheduling a task to determine and execute the proper
response. Each task T; € T has a running time 7; € 7 which represents the amount of
computing power required to complete the response. The stimulus concept is modeled by
giving each task T; € T a ready time r; € R. The ready time is the time at which the task
becomes ready for processing, and no task may begin processing before its ready time. The
timeliness of the response is enforced by assigning each task T; € T' a deadline d; € D. The
deadline represents the time by which a ready task T; must finish for the response to be
timely.

The periodic scheduling problem is a specialization of the general scheduling problem in
which all tasks are known to recur with a specific period. The system is formally represented
as a 4-tuple (T, 7, P, D) where T is the set of tasks with running times 7. Each task recurs
with period P and each occurrence must complete within D time units of the beginning
of each period. It is often the case that P = D. This means that a task need only
complete before the period expires and the next task arrives. As in the general scheduling
problem, precedence constraints may also be specified which impose a partial ordering on
task executions.

The goal of the real-time scheduler is to assign tasks to be processed so that some
function f(S) of the schedule S is maximized and the ready times and task precedence <
are not violated. The function f serves to measure the overall timeliness of the schedule and
can take on many forms. In a hard deadline system f is a simple step function with value 1
when all deadlines are met and O otherwise. For soft deadline systems f may measure the
total processing time spent past all deadlines, or other quantities.

2.2 SOFT-ACCURACY APPROACH

One idea that has recently been proposed to handle overload problems is to take ad-
vantage of the relationship between solution accuracy and computation time expended that
is inherent in some algorithms. This concept has been explored using several methods. In
this paper, we survey the backup approximation method and the imprecise computation
method.

The backup approximation method [Liestman and Campbell 86] provides two tasks for
every job in the system that may be prone to missed deadlines. The primary task is the full

C-5

implementation to perform the job, and the alternate task is a backup computation that
yields an approximate result but in a predictable time. A real-time system is said to be in
an erroneous state when the primary task for any job has not completed by its deadline.
To recover from an erroneous state the system substitutes the output of the alternate task.
The scheduler ensures that jobs can be satisfied with the alternate task if the primary task
is unable to complete. Section 3 discusses the backup approximation methed in detail and
presents several algorithms for scheduling simply periodic systems.

The imprecise computation method [Liu 89] [Chung 90] provides two subtasks for each
job. The first subtask, called the mandatory subtask, computes a rough estimate. The
second subtask, referred to as the optional subtask, accepts a rough result and refines it
to a more precise solution. The optional subtask must be such that the accuracy of the
result monotonically increases with the amount of time spent on the computation. This is
referred to as the monotone restriction and allows the scheduler to increase the accuracy of
any solution by allowing the optional subtask more time. This restriction also ensures that
the optional subtask can be preempted at any time and the best result so far computed will
be available. Section 4 discusses the imprecise computation approach in detail and surveys
several algorithms for scheduling both periodic and general scheduling problems.

Softening the accuracy requirement can be helpful in a number of ways, but the most
studied effect is in overload management. In an overload situation, there is not enough
processing power available to handle all of the outstanding requests, and hence some of
the deadlines must slip. In a more traditional system some of the tasks would be entirely
discarded because the, had missed their deadlines, resulting in possibly catastrophic con-
sequences. In the soft-accuracy approach, when an overload situation occurs the system
merely softens the accuracy requirements on some of the tasks to buy more time. The old
task set that exceeded processing capacity is effectively transformed into a new task set
that is schedulable with the current processing capacity. As a result, all deadlines can again
be met, and although some functions may be performed somewhat less accurately, no hard
failures occur.

2.3 EXAMPLE

As an example, consider a fictitious autonomous reconnaissance drone. The drone has its
own navigation and terrain avoidance system, and is designed to fly knap-of-the-earth to the
target location, gather intelligence, and return to base. The system also has a rudimentary
threat avoidance system that takes evasive action when it detects a missile lock. Under
normal operating circumstances, the real-time system must perform the following periodic
tasks: (1) maintain course by correlating midflight navigational corrections, (2) maintain

C-6

cover while avoiding terrain, and (3) fine-tune the engine to conserve fuel. Since this is a
periodic system, it is easily handled by a traditional real-time scheduler.

Unscheduled events, such as when an obstacle is detected ahead or when hostile missile
lock is detected, tend to cause unpredictable levels of overload in the system, and overbuild-
ing the system to handle all overload situations can be costly. An alternative approach is
to allow the system to spend less time on operations of lesser importance by accepting less
accuracy during the transient overload period. For example, if an unexpected obstacle is
detected, precise fine-tuning of the engine can be sacrificed while more time is allocated to
the terrain avoidance system. This action is still consistent with fulfilling the mission since
the amount of fuel wasted in that short time is negligible, but crashing into obstacles will
certainly end the mission. Similarly, when missile lock is detected, precise knap-of-the-earth
terrain following can be sacrificed since maintaining cover is momentarily unnecessary. Soft-
accuracy systems seek to make such adjustments in a natural way with minimal overhead.

3. BACKUP APPROXIMATION METHOD

The backup approximation method described in [Liestman and Campbell 80] [Liestman
and Campbell 86] is useful for scheduling independent task sets on a uniprocessor system.
The method provides graceful degradation of service for simply periodic task sets! with
stochastically distributed execution times without resorting to excessive overbuild. That is,
the method is able to ensure that all deadlines are met for a wide range of processor loads
while keeping processor utilization high in the average case.

The backup approximation method seeks to ensure that all deadlines are met by aug-
menting primary tasks that cannot be reliably scheduled to meet deadlines with alternate
tasks that can be reliably scheduled. The primary tasks provide exact solutions but have
variable execution times, while the alternate tasks have predictable, bounded execution
times but provide solutions of less accuracy or precision. The alternate task is always
scheduled such that if the primary task misses a deadline, the scheduler can automatically
substitute the approximate solution provided by the alternate task. Thus all deadlines are
met, with accuracy traded for timeliness where necessary. The algorithms in this section
seek to ensure all deadlines are met while minimizing the number of alternate tasks that
must be substituted.

The degree of scheduling reliability is a tradeoff between the uncertainty in the execution
time of a task and the extent of overbuild that is acceptable in the system. The primary
tasks cannot be reliably scheduled because their execution times vary widely. This is because

'Simply periodic tasks have periods that are integer multiples of the next smaller period.

C-7

a reliable schedule for the primary tasks would necessarily have to include enough idle time
to handle all worst case running times. If this level of overbuild is not feasible, then the
primary tasks cannot be reliably scheduled. The alternate tasks can be reliably scheduled
with little average idle time since their runtimes are predictable, although a price is paid in
the form of reduced solution accuracy. The backup approximation method thus guarantees
deadlines without excessive overbuild by trading accuracy for more predictable runtimes
when the need arises.

A backup approximation scheduling problem for a fault-tolerant (FT) system can now
be formally defined as a 5-tuple (T, 7, A, a, P) where T is the set of primary tasks, and A
are the alternate tasks. Each primary task T; has runtime 7;, and each alternate task A; has
runtime a;. P is the set of periods which is the same for the primary and alternate tasks.
The deadlines D are not included since they are assumed to be the same as the periods P.
A task need only complete before the period ends and the next task arrives.

The optimality of the schedule is measured in terms of the number of alternate tasks
that must be substituted as deadlines expire. If no alternate tasks are substituted in the
schedule then all solutions delivered are exact and on-time, and the schedule is referred to
as FT-optimal. If a schedule can be met by substituting any number of alternates then it
is referred to as FT-feasible. The algorithms in this section produce FT-feasible schedules
where the number of alternate results substituted is minimized.

3.1 SCHEDULING ALGORITHMS

This section introduces algorithms to build both optimal static and dynamic schedules
for simply periodic task sets (defined later), where the optimality of the schedule is measured
by the number of alternate (and hence imprecise) results that must be substituted in order
to meet all deadlines. The static scheduling algorithm is optimal in that it substitutes the
fewest alternate tasks for any precomputed schedule. The dynamic scheduling algorithm
is optimal in that it substitutes the fewest alternate tasks for any possible schedule. The
static algorithm will be presented first since the dynamic algorithm employs elements of the
optimal static schedule.

Both algorithms require that the task system be simply periodic. A simply periodic
task system can be described as a modification of the periodic scheduling problem as
(T,7,A,a,P, M) where T and A are the set of primary and alternate tasks with expected
runtimes 7 and precise runtimes a, periods P, and period multiples M. The simply periodic
property is satisfied when all periods are integer multiples of the next smaller period as fol-
lows. Assume the task set is arranged with the periods in increasing order {p,p3,...,pn}-

C-8

The set M = {m;,m3,...,ma_1} is then the set of period multiples that defines period
pi+1 from period p; as Vi, piy1 = pim.

3.1.1 Static Algorithm

Let (T, 1,A,a, P, M) be a simply periodic FT system. A static schedule that maximizes
the number of primary tasks completed can be calculated recursively using a greedy strategy.
Assume that some optimal static schedule S, has been calculated for tasks 1 through r where
the tasks are numbered by increasing period. A provisional schedule S, is constructed
by appending together m, copies of schedule S,. The schedule S;,, is then modified by
removing copies of primary task T, where 7, is the largest among {ry,..., 7} appearing in
schedule S,. Copies of T, are removed until enough idle time exists to schedule the alternate
task A,41. If the resulting idle time is large enough, then task T,,; is scheduled as well.
Otherwise, if some primary task T, exists in the schedule such that 7, > 7,41, then replace
T, with T;4,. The resulting schedule is S,4,.

The above algorithm can be shown to maximize the number of primary tasks completed
for any statically created schedule, and will have at least as much idle time as any such
optimal schedule. Liestman and Campbell [Liestman and Campbell 80} prove that it runs
in O(T"! m;) time for a schedule of n simply periodic tasks.

3.1.2 Dynamic Algorithm

In the static schedule shown above, it is often the case that an alternate task A; and a
primary task T; are both scheduled. This is potentially wasteful since the alternate task will
be run even if the primary task runs to completion. Thus the time spent on the alternate
task was wasted and could have been used to run another primary task that was not able
to complete in the static schedule. This is the basis for the dynamic backup approximation
scheduling algorithm. Let S, be a static schedule of n tasks. Create a revised schedule S,
by scheduling all primary tasks before their alternates. When running the schedule, if any
primary task T; completes, the time reserved (later in the schedule) for its alternate A; can
be reallocated to other primary tasks. Thus the number of primary tasks that complete
can be increased.

An algorithm using this strategy is presented in [Liestman and Campbell 86] and shown
to maximize the number of primary tasks completed for any schedule with as much idle
time as any such schedule. The algorithm is proven to run in O([]"]! m;) time [Liestman
and Campbell 86] to schedule n simply periodic tasks for one cycle of the largest period
in P. A variation of the dynamic algorithm that uses a simple table is also possible (see

C-9

[Liestman and Campbell 86]). This variation is based upon a tree of schedules approach
and provides faster reallocation online.

4. IMPRECISE COMPUTATION METHOD

The imprecise computation method is currently under development at the University
of Hllinois. In this method each task is broken up into two parts: a mandatory subtask
that produces a rough, but acceptable result, and an optional subtask that refines it. The
deadlines for both mandatory and optional subtasks are the original task deadline. All
mandatory subtasks are required to finish by their deadlines, with optional subtasks running
in any left over time before the deadline arrives. Additionally, all mandatory subtasks are
required to complete before their optional counterparts can begin.

The system can now be formally defined as an extension of the general deadline schedul-
ing problem. A general imprecise computation deadline scheduling problem is a 7-tuple
(T,M,m,0,0,R,D). T = {T1,T32,...,T} is a set of tasks each of which is split into
mandatory and optional subtasks M = {M;,...,M,} and O = {0,,...,0,} with runtimes
m = {m;,my,...,my} and o = {01,02,...,0,}. The mandatory and optional subtask
sets have an intrinsic precedence relation (Vi) M; < O; that prevents any optional subtask
from running before its mandatory counterpart has completed. The tasks become ready for
processing at ready times R = {ry,rs,...,7,}, with deadlines D = {d;,d,,...,d,}.

As with traditional real-time systems there are scheduling algorithms to handle the
general deadline scheduling problem and the periodic scheduling problem. The general
schedulers presented in this paper are variations of a newly developed scheduling algorithm
based upon network flow problems [Blazewicz and Finke 87}, while the periodic schedulers
presented are based upon traditional real-time schedulers using static and dynamic pri-
orities. It should be noted that the algorithms presented in this section are sometimes
suboptimal, even when the system is perfectly schedulable using traditional methods. How-
ever, these algorithms are useful when transient overloads occur frequently and overbuilding
the system to the worst case is prohibitively expensive.

The error abating properties of the optional subtasks are important in the imprecise
computation method. This is because scheduling is based upon the assumption of some sort
of functional relationship between the error in the solution and the time spent computing.
This assumption allows scheduling algorithms to measure the amount of error in terms
of time spent in computation. In general, the imprecise computation method requires
all optional subtasks to have the monotone error property. That is, the error decreases

C-10

monotonically as a function of computation time. Some scheduling algorithms in this section
require even stricter error behavior such as linear dependence.

Even when the scheduling algorithm does not require the optional tasks to exhibit some
specific error property, their error behavior may affect the total error of the scheduling
algorithms. For example, an optional task may refine error more quickly in earlier iterations
and more slowly in later iterations. Such tasks are particularly well suited to scheduling
with the Least Attained Time algorithm, but do not do as well under the Earliest Deadline
algorithm (both defined below).

The error properties referenced in this paper are assumed to have the form £;(p;) =
(1 - Zj;i)d where £;(p;) is the error of optional task O; in the j** period, o; ; is the processing
time allowed task O; in the j** period, and d denotes the shape of the curve. Tasks that
refine error more quickly in earlier iterations and more slowly in later iterations have the
convex error property, denoted by d > 1. When d = 1 the error is reduced linearly, and is
referred to as the linear error property.

4.1 SCHEDULING PERIODIC TASKS

The general imprecise computation scheduling problem can be recast as a periodic
scheduling problem by simply replacing ready times with periods. The problem is a 7-
tuple (T, M, m,0,0, P, D), where T is the set of tasks split into mandatory and optional
subtasks M and O with runtimes m and o. Each task recurs with a period P and must
complete within D time units of the start of the period. The optimality measure f is the
average error over all tasks.

Periodic task sets are classified as type N or C based upon the system behavior under
error accumulation. For systems of type N, tasks errors in consecutive periods can be
tolerated as long as the average error over many periods remains low. For systems of type
C tasks, the error is accumulated between periods, and a hard failure results if an optional
task is not allowed to complete within some number of periods.

For example, frame processing of video images is a type N task while inertial guidance
might be a type C task. In the video processing example, the frame stream is still useable
even if each frame has a minor defect. This is because the error from previous frames has
little or no effect on the error in subsequent frames. In the inertial guidance example, a
positional error in one period is used as the starting location for the calculation in the next
period and the errors in consecutive periods will tend to compound. Let us say the optional

c-11

subtasks must sometimes run to completion to eliminate the accumulated error, or a hard
fault results.

Algorithms for scheduling both type N and C periodic systems make use of the rate
monotonic algorithm of Liu and Layland. Traditionally this algorithm is used to trade
some increased overbuild cost for deadline guarantees. It works by statically assigning
priorities to tasks by decreasing interarrival rates, and scheduling tasks by these priorities
at run time. Liu and Layland prove that the rate monotonic algorithm is able to guarantee
all deadlines if the total processor utilization of the task set is less than approximately 69%.
The total processor utilization is calculated as U = Y"1, g‘%, where 7; is the running time,
and p; is the period.

When applied to the imprecise computation method, the rate monotonic approach can
be used to ensure that all mandatory subtasks meet their deadlines, with optional subtasks
being scheduled by some other means. In all of the algorithms that follow, the priorities
are partitioned into two classes. The mandatory tasks M receive rate monotonic priorities
while the optional tasks O receive priorities based upon the particular algorithm being used.
These optional task priorities may be static or dynamic. In either case the optional task
priorities are set so that the highest priority of any optional task is lower than the lowest
priority of any mandatory task. The mandatory and optional tasks are then scheduled
according to these priorities. The priority queue is also purged of expired tasks since no
value is added by executing beyond the deadline. The result is that all mandatory tasks
take priority over optional tasks and are scheduled using the rate monotonic method and
all optional tasks are scheduled in the idle time between mandatory tasks.

In the remainder of this section we will present several scheduling algorithms for both
type N and type C tasks. When applicable, the results will be given for both uniprocessor
and multiprocessor systems.

4.1.1 Scheduling Type N Tasks

Since type N systems are only affected by the average error a good performance measure
would be the error of all tasks averaged over all periods. Given a feasible schedule S for
task set T', let f(S) be the error averaged over all tasks T; € T for some time interval [to, t,].
f(S) can then be written as

L L
f(5)=m§t1_to ,;z §i(p;)

C-12

where p; is the period of task T;, the index of the period starting at time ¢g is £, and &(p;)
is the error in subtask O; incurred in the j* period. Liu presents both static and dynamic
priority driven schedulers that minimize or nearly minimize f(S). Algorithms that minimize
f are referred to as optimal, while all others are referred to as suboptimal.

4.1.1.1 Static Priority Algorithms

In this section we discuss algorithms for scheduling based upon the rate monotonic
approach of Liu and Layland. These algorithms are called static because they rely on
permanent priorities that are assigned to tasks when the system is built and do not change
with time. Algorithms are presented for scheduling type N tasks on both uniprocessor and
multiprocessor systems.

4.1.1.1.1 Least Utilization Algorithm

The least utilization algorithm is used to schedule periodic type N tasks on uniprocessor
systems. The algorithm works by preemptively assigning the processor to the optional
subtask that has the least utilization u; = ﬁf The algorithm can be proven optimal for a
restricted subset of task sets when all optional subtasks have the linear error property (i.e.,
the error decreases linearly with computation time).

Priorities are computed as follows. Let the 6-tuple (T, M, m, 0,0, P) represent a system
of periodic tasks where T is a task set split into mandatory and optional subtasks M
and O with runtimes m; and o;, and recurrence periods p; € P. Priorities are assigned
based upon the value of u; = i_@ for optional subtasks with the highest priorities going
to subtasks with the lowest values of u;. As with all imprecise periodic schedulers, all
mandatory subtasks are assigned rate monotonic priorities with values higher than any
optional subtasks. The mandatory and optional subtasks are then scheduled preemptively
using these static priorities.

The linear error property is necessary but not sufficient to ensure optimal scheduling
with the least utilization algorithm. That is, there are task sets that can be scheduled to
achieve zero error that the algorithm will schedule with some non-zero error. Even when
all periods are some integral multiple of the next smaller period (so-called simply periodic
systems), the algorithm is suboptimal. Chung [Chung 90] shows an upper bound on the
error for simply periodic task sets with weights w; showing the relative importance of the
tasks. The task set is required to have the linear error property and to satisfy (Vi < n)
8 =pi— Y p=i ,lji-m;. 2 0;. An upper bound on error for task sets scheduled using the least

C-13

utilization algorithm can then be written as

r

: wip; [Th=1(mi + ;)]
E<l- wi + = -
E "7 i1 | Pi— Tiei Emy

where 1 is the least index satisfying s; — Ei;ll(m,- + 0;) < 0;. H the task set is further
restricted so that all tasks have the same period, then Chung is able to show that the least
utilization algorithm minimizes the average error.

4.1.1.1.2 Extensions to Multiprocessor systems

The rate monotonic methods of Liu and Layland can also be used to schedule imprecise
task sets on a multiprocessor system. In this approach all tasks are statically assigned to
processors and each processor is scheduled using the rate monotonic algorithm. Assigning
the tasks is similar to a bin packing problem and can be approximated using the First Fit
Decreasing algorithm described below. The tasks are assigned to processors at initializa-
tion time, whereafter the processors schedule mandatory and optional subtasks from their
individual task sets independently using the rate monotonic algorithm.

The First Fit Decreasing algorithm is used to assign tasks to processors. All tasks are
ordered by increasing repetition periods and assigned to the lowest numbered processor
(first fit) that can accept it. A task T; can be accepted on a processor only if

Y B L et o
T.ET' pk pl

where T’ is the set of tasks currently assigned to the processor and m; and p; are the

mandatory runtime and period of the new task, and n = |T|. In [Chung 90), it is shown

that this criterion is sufficient to guarantee all mandatory deadlines will be met.

The use of the rate monotonic algorithm to schedule tasks on individual processors
implies some underutilization of processing capacity, and the resulting slack time is used
to execute the optional tasks. In the imprecise computation method, this translates to
guarantees that all mandatory deadlines will be met, and that there will be some guaranteed
processor time left over for execution of optional tasks.

The general method described above can be modified to use any of the scheduling
aigorithms presented in the next section. The tasks are statically assigned to processors
using the same First Fit Decreasing approach. The only difference is in how the priorities
are assigned to the optional tasks when each processor begins scheduling its own set of
assigned taske.

C-14

4.1.1.2 Dynamic Algorithms

Dynamic scheduling algorithms rely on priorities that vary over time. Thus the system
can adjust to changes in load and other unexpected events. Four such algorithms, the Least
Attained Time, Best Incremental Return, Earliest Deadline, and Least Slack Time, are
presented. Of these algorithms, only the Best Incremental Return algorithm is optimal, but
is impractical since it requires perfect knowledge of the error behavior of all optional tasks.

4.1.1.2.1 Least Attained Time Algorithm

The Least Attained Time algorithm is used for scheduling on uniprocessor systems where
optional tasks have the convex error property. That is, they refine error more quickly in
earlier iterations and more slowly in later iterations. Processing time is assigned to optional
tasks on a shortest-elapsed-time-first basis. That is, the task that has expended the least
time has the highest priority.

The Least Attained Time algorithm is a preemptive, dynamic priority-driven algorithm
that assigns priorities to optional subtasks based upon the amount of time they have been
allowed to process. Optional tasks with the least accumulated processing time are assigned
the highest priority, and optional subtasks that have logged the most processing time receive
the lowest priority. As in the static algorithms, processing time is assigned to optional tasks
only when there is no mandatory task available, and the processor may be preempted by
any mandatory subtask that becomes eligible. This can be implemented as a preemptive,
priority driven scheduler with dynamic priorities for the optional tasks and fixed, rate
monotonic priorities for the mandatory tasks. The dynamic priorities are assigned to be
lower than all fixed priorities to ensure that no optional task preempts a mandatory task.

No performance criteria have been proven for this strategy, but experiments in [Chung
90] seem to support intuition. For convex error functions, the Least Attained Time algo-
rithm is among the best performers of the algorithms presented in this section, but performs
more poorly for convex functions.

4.1.1.2.2 Best Incremental Return Algorithm

The Best Incremental Return algorithm is used for scheduling on uniprocessor systems,
and can be shown to run optimally when all periods are equal. Unfortunately it requires
perfect information about the error performance of the optional tasks, and for this reason
it is considered impractical. As the name suggests it runs the optional task that promises
the best incremental return during the next time quantum.

BIR is a greedy algorithm that schedules tasks by running the task that maximizes the
amount of error reduction that can be attained in the next time slice. If the error function

C-15

£x(t) for optional subtask O is explicitly known, the expression for the incremental return
can be calculated for each optional subtask that is ready. The incremental return for subtask
Oy is then &i(ox + 6) — &x(ok), where o is the accumulated processing time for task Ok
and § is the length of the time quantum.

This algorithm is impractical since it requires knowledge of the exact error behavior for
all optional subtasks, and is included in Liu’s study only as a benchmark. It is, however,
possible to prove that this scheduling technique minimizes the average error when the
periods of all tasks are the same.

4.1.1.2.3 Earliest Deadline Algorithm

The Earliest Deadline? algorithm schedules all optional subtasks based on the nearest
deadline. Mandatory tasks are assigned fixed priorities using the rate monotonic formula-
tion. To ensure that no optional task runs at the expense of a mandatory task, dynamic
priorities are assigned lower values than all fixed priorities. Tasks are scheduled on a pre-
emptive, dynamic priority driven approach.

In the imprecise computation method this algorithm can produce an optimal schedule if
it exists when the total utilization U falls below 100%. Simulations in [Chung 90] show that
the algorithm tends to perform better than other algorithms when the system is overloaded
(U > 1), and the tasks have differing periods.

4.1.1.2.4 Least Slack Time Algorithm

The least slack time algorithm® attempts to estimate the urgency of the optional sub-
task by the amount of slack time left for that task. The slack time is defined to be the
difference between the time to deadline and the projected processing time left in the task.
The least slack time algorithm schedules all mandatory subtasks using the rate monotonic
algorithm. When no mandatory subtask is outstanding, the algorithm preemptively assigns
the processor to ready optional subtasks. The optional subtask with the lowest slack time
receives the highest priority. As with the other algorithms this can be implemented as a
dynamic priority driven scheduler where the mandatory tasks have fixed priorities that are
higher than any assignable dynamic priority.

The least slack time algorithm is closely related to the earliest deadline algorithm. Sim-
ulations in {[Chung 90] show that this algorithm performs similarly to the Earliest Deadline
algorithm when the system is overloaded (U > 1), and the tasks have differing periods.

?In [Liu and Layland 73], the Earliest Deadline algorithm is proven to minimize tardiness in traditional
deadline driven systems.

3For traditional deadline driven systems it is shown to optimally schedule any task set that is schedulable
under the earliest deadline algorithm [Leung 89].

C-16

4.1.2 Scheduling Type C Tasks

Type C tasks accumulate error effects over consecutive periods, and fail either when the
mandatory subtask fails to meet its deadline, or the accumulated error exceeds a specific
threshold . The error accumulation is reversed only by allowing an optional task to run to
completion so that a precise result is produced. For this reason schedulers for type C tasks
must be able to guarantee that optional subtasks are able to run to completion on a regular
basis, in addition to guaranteeing that all mandatory subtasks meet their deadlines.

In this section we consider scheduling of type C tasks where the error compounding is
a fairly simple accumulation function. For an arbitrary task T;, the error accumulation will
be defined as the number of consecutive periods in which an error was produced since the
last precise computation. The task fails when the accumulated error exceeds the threshold
7. This accumulation function has the result of requiring that for every v periods at least
one period produces a precise result, and any task T whose error accumulation exceeds its
limit v is defined to have failed.

4.1.2.1 Length Monotone Algorithm

In [Chung 90] it is shown the problem of scheduling optional tasks in an interval of
v periods into the future such that no task fails due to error accumulation is reducible
to a multiprocessor scheduling problem and hence is NP-Complete. The length monotone
algorithm seeks to heuristically build a feasible schedule for a task set T of type C algorithms
on a uniprocessor system. That is, it seeks a schedule such that all mandatory tasks
complete, and no task fails due to error accumulation. All tasks are assumed to have equal
periods, and identical accumulation limits 4. A condition for guaranteeing schedulability
of a task set due to Liu is also presented.

The length monotone algorithm works as follows. At the beginning of each period
Yi=1 M units of time are allocated to cover all of the mandatory subtasks. If p is the
period length, then p — "%, m; units of time are available in each period to allocate to
optional subtasks. Call this the available period time. During any ~ periods into the future
there are [T| remaining optional subtasks that must be completed to avoid a failure, one for
each task. Let this set be R. Schedule the available period time for each of the v periods
into the future using a First Fit Decreasing algorithm (described below). If there is any
time left over in any period, it is used to schedule additional optional subtasks to further
reduce the error.

Tasks in R are scheduled for 4 periods into the future using a First Fit Decreasing

C-17

algorithm * as follows. The optional tasks R are sorted in order of non-increasing execution
times o;. The sorted list is then assigned processing time in individual periods on a first
fit basis. That is, assign the next task on the list to run in the first period in which it
completely fits. In [Chung 90; it is shown that the algorithm is guaranteed to find a feasible
schedule when

Q-1 2
<
o 1u+ o+ IU <1
Here U = Y., —d'—l""P 2% js the total utilization factor, and v = 3}°}, -'%i is the minimum

utilization factor.
4.1.2.2 Extended Length Monotone Algorithm

The extended length monotone algorithm is a heuristic scheduling approach for unipro-
cessor systems where the tasks are simply periodic and have the error accumulation limits
as described above. A task set is simply periodic when all periods are some integer muiti-
ple of the next smaller period in the task set. The algorithm assumes that the task set is
partitioned into sets T},T5,...,Tx where all tasks in a set T; have the same period, ready
time and deadline.

The algorithm works as follows. The subtasksin R are partitioned into sets R;, Ra,..., Ry
by identical periods. All mandatory tasks are scheduled according to the rate monotonic
algorithm. The subtasks in R; are assigned to the processor using FFD in time intervals
when no mandatory subtask is available. After the tasks in R; are scheduled the leftover
time is used to schedule all tasks in R2, and so on. No error bounds are known for this
algorithm.

4.2 SCHEDULING GENERAL TASKS

The general deadline scheduling problem is a 7-tuple (T, M, m,0,0, R, D), where T is
a set of tasks split into mandatory and optional subtasks M and O with runtimes m and
o, ready times r; € R, and deadlines d; € D. An additional weighting function w:T — R
can be specified to designate the relative importance of the tasks. The weighting function
is used to emphasize the effect of individual tasks in the total error, and in this paper will
be restricted to the special case of) w; = 1. If no weighting function is specified, all
tasks are assumed to have equal weight. Task sets are understood to have the precedence
constraints between mandatory and optional subtasks, and there may also be additional
precedence constraints < specified on T. An additional 0/1 constraint may also be applied

‘First analyzed by Johnson [Johnson 73] as a heuristic solution to the NP-Complete bin packing problem.
He showed that the First Fit Decreasing algorithm guarantees solutions to within about 22% of optimal.

C-18

to the problem. The 0/1 constraint specifies that all optional subtasks must either run to
completion, or their results are discarded.

The algorithms for scheduling general tasks are based upon the classical Earliest Dead-
line algorithm, and a more recently developed technique using network flow techniques
[Blazewicz and Finke 87]. The network flow techniques are useful for uniprocessor schedul-
ing of task sets with precedence constraints, and multiprocessor scheduling of independent
task sets. The Earliest Deadline derivatives are somewhat faster for uniprocessor and mul-
tiprocessor scheduling, but require more restrictions on the task set.

All algorithms in this section require that all optional subtasks have a special linear error
property where all subtasks have identical coefficients. That is, all optional subtasks produce
results with error that decreases linearly with time spent on computation, and the rate at
which the error is diminished is the same for all tasks. This allows the computational error
§; for optional task O; to be approximated by §; = 0; — 0;, where o; is the time allocated
to task O;. Thus, the error is proportional to the time left to complete the preempted
computation. The average error is then computed as 3 &w;, where the w; are the weights
satisfying 3" w; = 1. All algorithms in this section minimize the total error incurred over
the schedule.

4.2.1 Network Flow Algorithms

The algorithms in this section are based upon finding the maximum flow in directed
networks. In this technique an imprecise computation task system (T, M,m,0,o0, R, D) is
transformed into a flow network, and a schedule is determined by calculating the maximum
flow through the network. These algorithms can be used to schedule dependent tasks on
a uniprocessor system, or independent tasks on a multiprocessor system. For either case,
systems with equal task weights can be scheduled in O(n?log® n) time, while systems with
different task weights can be scheduled in O(n®) time. These network algorithms can also
be used to schedule systems under the 0/1 constraint on a uniprocessor system when all
optional subtasks have unit running time.

The networks are represented by directed graphs, or digraphs. A graph G = (V, A) is
a digraph with vertex set V and directed edge set A if all edges are directed. That is, if
(vi, v;) € A, then there exists a directed path from vertex v; to v;, but not necessarily in the
other direction. All edges are labeled with a weight indicating the flow capacity of the edge
in the direction specified. The digraph thus represents a system of flow capacities between
vertices.

C-19

The flow problem is then to find the maximum legal flow capacity between any two
vertices in the digraph. The vertex where the flow originates is referred to as the source,
and the vertex where the flow terminates is referred to as the sink. A legal flow between
vertices is one in which the flow on any edge does not exceed the specified capacity, and
inflow equals outflow for all vertices except sources and sinks. At the source and sink, only
the outflow and inflow capacities respectively are considered. Several fast algorithms exist
to find legal flows in digraphs, most notable among these are the Ford-Fulkerson algorithms
[Ford and Fulkerson 62] and related techniques.

4.2.1.1 Max-flow Algorithms

The max-flow scheduling algorithms can schedule unweighted task sets on uniprocessor
and multiprocessor systems. Uniprocessor systems can be scheduled for dependent task
sets with or without the 0/1 constraint. For task sets with the 0/1 constraint, all optional
subtasks are required to run to completion in unit time, while no restrictions are placed
on the task sets without the 0/1 constraint. For multiprocessor systems tasks can be
scheduled only without the 0/1 constraint, but the task set must be independent. In all
cases the algorithm runs in time O(n?logn).

The digraphs constructed for these scheduling algorithms all follow the same general
layout. They all contain a single source and sink, with no edges flowing into the source,
or out of the sink. Vertices are created to represent all tasks T}, subtasks M; and O;, and
time intervals A; available for scheduling. A few additional vertices are provided in the
construction to represent the source S;, sink S;, and a special vertex, I. used to measure
schedulability. Directed edges are laid between vertices using running times o; and m;, and
time intervals as weights. A special edge A connects the vertex I to the sink S, and is
varied during the algorithm to measure schedulability.

To schedule dependent task sets on uniprocessor systems, the algorithms make use
of modified deadlines defined as follows. Let Ti,...,T, be a set of tasks with deadlines
di,...,dn. T; is defined to be a successor of T; if T; < T; in the precedence ordering.
Let A; be the set of all successors for task T;. The modified deadline d/ is then defined
as minT;ea,(di U d;). Lawler and Moore [Lawler and Moore 69)] proved that a feasible
uniprocessor schedule exists using the modified deadlines D’ if and only if a schedule exists
using the unmodified deadlines D.

This result allows the precedence constraint to be ignored by computing schedules with
the modified deadlines. When such a schedule is found, it can be rearranged into a legal
schedule under the precedence by exchanging the assigned times for offending tasks until

C-20

the precedence constraints are satisfied. The resulting schedule then satisfies the precedence
while preserving the same overall error.

An example digraph is shown in Figure 1.

Figure 1. Digraph Representation of Task System (T, M, m, 0,0, R, D)

It consists of vertices
{Tlt"-)TR’T{"-"T:.)Ml!"wMu’Olv"-’onisla329I’Alv'°':Ak}

where the T, TY, M, and O vertices correspond to tasks T', M, and O respectively, S; and S;
are the added source and sink, and I is the added special vertex. The A vertices correspond
to time intervals, and are constructed as follows. Let {a;,a3,...ax41} be the combined set
of deadlines and ready times D U R arranged in increasing order. Now each pair (a;,a;41)
represents a time interval, and the sequence of intervals represented by {a;,a3,...6x41}
covers the entire scheduling interval. Vertex A; corresponds to the time interval (a;,a;41).

c-21

Edges labeled with flow capacities are laid between the vertices as follows. For all T;, an
edge is laid between S; and T;, and carries weight m; + o;. Each T; is separately connected
to vertices M; and O; with weights m; and o; respectively, while each M; and O; is in turn
connected to T/, again with weights m; and o; respectively. In addition, all O; vertices
connect to I with weights o;. Each T} vertex is connected to each A; vertex for which task
T; is schedulable in the interval [a;,a;41] with weight a;41 —a;. Each A; vertex connects to
S, with weight @;4, — a;, and I connects to Sz with weight A. A more complete description
of the digraph construction and associated algorithms can be found in [Shih 89a).

The basic algorithm is used to find uniprocessor schedules with minimal total error for
unweighted task sets without the 0/1 constraint. It works by constructing the digraph
representation of the problem and measuring the maximum flow attainable from S; to S;
for various capacities of edge A. The flow is first measured with A = 0. Since the flow out
of vertex I over edge A is 0, the total flow into I is also 0. So this flow is the maximum
amount of time that can be allotted to all tasks in an optimal schedule, and can be used
to determine the amount of total error £ = 3, & in an optimal schedule. The flow is
then measured with A = £, and a second algorithm uses the result to create a preemptive
schedule with total error £&. The complexity of the basic algorithm is O(n3logn), and can
be improved by minor modifications to achieve time O(n?logn).

The basic algorithm can be extended to schedule unweighted task sets on a uniprocessor
with the 0/1 constraint if all optional tasks have unit running time. The schedule then
produces minimal error by mini~ zing the number of incompleted optional subtasks since
they do not reduce error. The extended algorithm first uses the basic algorithm to find a
schedule with minimal error ignoring the 0/1 constraint. This schedule is then adjusted by
trading time slots for tasks until the number of incompleted optional subtasks is optimized.
The extended algorithm also runs in time O(n?logn).

Multiprocessor scheduling requires that the unweighted task set be completely inde-
pendent except for the implicit precedence relation between the mandatory and optional
subtasks. The scheduling algorithm is essentially the same as for the uniprocessor case
without the 0/1 constraint. The only difference is that the edge capacities in the graph are
somewhat different, and McNaughton’s rule [McNaughton 59] is used to find the multipro-
cessor schedule in the final step.

C-22

4.2.1.2 Min-cost-max-flow Algorithms

Weighted task sets without the 0/1 constraint can be scheduled with minimum total
error on both uniprocessor and multiprocessor systems using a slightly more complicated
approach. As with the max-flow algorithm, uniprocessor scheduling can be performed for
dependent task sets while multiprocessor scheduling requires independent task sets. In both
cases the algorithm runs in time O(n).

The algorithm works by constructing a weighted flow digraph. This is a flow digraph,
where each edge e; has a flow capacity ¢; and a cost w;. The cost of the flow through edge
e; is then w;f;, where f; is the actual flow through e;. A legal flow, of course, satisfies
fi < ¢i. The graph will have a maximum legal flow F = 3°,.c 4/ fi, where A’ are all edges
out of the source vertex. The algorithm then finds the flow allotment that attains the
maximum total low F' and minimizes the cost C = 3_, .4 ¢if;. Complete details of the
digraph representation of the scheduling problem, with the network flow algorithm are given
in [Shih 89a).

4.2.2 The Modified Earliest Deadline, and Other Fast Algorithms

Shi, Liu, and Chung [Shih 89b] present fast algorithms that can be used to preemptively
schedule unweighted task sets with or without the 0/1 constraint. Dependent task sets
without the 0/1 constraint can be scheduled on uniprocessor systems, while multiprocessor
scheduling requires that the tasks be independent. Task sets with the 0/1 constraint can
only be scheduled on uniprocessor systems, and all optional subtasks are required to have
equal running times.

The first two algorithms are based upon the classical Earliest Deadline algorithm. In
this algorithm the priorities are assigned based on the earliest approaching deadline of all
ready tasks, and higher priority tasks that become ready may preempt a lower priority
task that is running. Additionally, no tasks are allowed to compute past their deadlines,
and are terminated even if they have not run to completion. The Earliest Deadline algo-
rithm is modified to schedule task sets without the 0/1 constraint on both uniprocessors
and multiprocessors with minimal total error. The uniprocessor scheduler finds schedules
for unweighted dependent task sets. The uniprocessor algorithm can be modified using
McNaughton’s rule to schedule unweighted independent task sets on systems of identical
processors. The uniprocessor algorithm runs in time O(nlogn), while the multiprocessor
algorithm runs in time O(pn + nlog n) where p is the number of processors.

The authors [Shih 89b] also present algorithms to schedule uniprocessor task sets with
the 0/1 constraint. Their Depth First Search algorithm can schedule unweighted dependent

C-23

task sets with the 0/1 constraint on uniprocessor systems when all the optional subtasks
have equal running time in time O(n?). If the ready times of all the tasks are the same,
a simpler Latest Deadline First algorithm can optimally schedule tasks on a uniprocessor
system in time O(nlogn).

5. APPLICATIONS

Trading time for accuracy can be very beneficial for many real-time applications where
an imprecise but timely answer is more important than a late answer. The key to building
such systems is to find ways to structure problems so that successive refinement algorithms
are possible.

In this section we introduce several general algorithmic techniques that can be applied
to soft-accuracy approaches, as well as a specific application involving real-time distributed
databases. The techniques presented are not the classical paradigms of greedy, divide and
conquer, or dynamic programming, but rather algorithmic techniques that lend themselves
to soft-accuracy applications. The techniques are iterative partitioning and accumulation
algorithms, and probabilistic algorithms including Monte Carlo approximation algorithms,
Monte Carlo decision algorithms, and Las Vegas algorithms. Algorithms utilizing these
techniques will have the appropriate error behavior required for soft accuracy approaches.

5.1 ITERATIVE BOUNDING ALGORITHMS

Iterative bounding algorithms converge to a solution by successive refinement of upper
and lower bounds. The convergence may alternate between upper and lower bounds, as in
a binary search algorithm, or it may proceed from a single bound. Algorithms that con-
verge by squeezing a solution between two bounds are referred to as partitioning algorithms,
while algorithms that converge from one direction only are referred to as accumulation al-
gorithms. These algorithms can be contrasted with other iterative algorithms that do not
make apparent progress towards a solution with each iteration. For example, the error in
a well-behaved Taylor-Maclaurin series decreases monotonically as terms are added, and a
computation terminated early may be clearly useful. For a dynamic programming calcula-
tion of Catalan numbers, it is not clear how to use the results of a prematurely terminated
calculation.

Partitioning algorithms squeeze a solution between steadily approaching upper and lower
bounds. Examples of partitioning algorithms include sectioning algorithms such as New-
ton’s method for finding the root of an expression, branch and bound techniques, well-
behaved series expansions with alternating terms, binary and interpolation searches, and
other searchirg techniques.

C-24

Accumulation algorithms are similar to iterative bounding algorithms in that they con-
verge by successive accumulation of the solution. The difference is that one of the bounds
is not well defined. The algorithm then works by accumulating from the defined bound.
Many greedy algorithms fall into this category since they build solutions by accumulation
and do not reverse previous computations. Examples of these types of algorithms include
minimal spanning tree algorithms, maximal graph matching by alternating path methods,
minimal path algorithms, and series expansions with non-negative terms.

Iterative bounding algorithms are well suited for the imprecise computation method.
The successive refinement nature of these algorithms makes them ideal candidates for use as
optional tasks. The mandatory tasks can be computed either using the iterative algorithm
with a fixed number of iterations, or using some other algorithm. Moreover, it is often
possible to prove that the function of error with time has a particular shape (e.g., linearly
decreasing, convexly decreasing). This information can be used in selecting appropriate
scheduling algorithms [Chung 90].

5.2 PROBABILISTIC ALGORITHMS

Now let us move into the domain of probabilistic algorithms. We consider three cate-
gories of probabilistic algorithms: Monte Carlo approximation, Monte Carlo decision, and
Las Vegas algorithms. For each category, we describe the type of stochastic relationship
that exists between expended computation time and solution accuracy. We also suggest
how the relationship might be used as the basis for making tradeoffs between timeliness
and accuracy.

5.2.1 Monte Carlo Approximation Algorithms

Monte Carlo approximation algorithms were among the first probabilistic algorithms
to be developed. These algorithms use randomness to approximate a solution, and have
expected accuracy that increases with computation time. That is, approximations are
produced on each iteration, and tend to get closer to the exact solution with increasing
execution time.

As a simple example of such an algorithm consider a Monte Carlo approximation of .
In this algorithm there is a square region with side of length 2r, and thus area 4r2. Inscribed
in this square is a circle of radius r, with area xr2. We now throw darts at this region so
that they land randomly. The expected proportion of the total darts thrown that land in
the inscribed circle is the ratio of the areas, %;-, which simplifies to §. Thus, if we throw a
few darts and note the proportion landing inside the inscribed circle, we can expect to get

C-25

a rough approximation of x. If we throw many darts we can expect to get a more accurate
approximation. Monte Carlo approximation algorithms have also been used for computing
definite integrals, (the above example is actually a computation of the area of a circle), for
determining queue length in complex queueing systems that have no closed form solution,
and other numerical applications.

The time/accuracy characteristics of Monte Carlo approximation algorithms make them
reasonable candidates for the imprecise computation method. At design time, the relation-
ship between time and accuracy can be used to “size” the system. That is, enough com-
putation time can be dedicated to the algorithms so that “acceptable” results can always
be obtained. At run time, advantage can be taken of the relationship between time and
accuracy; if extra processing time becomes available, it can be put to use effectively. That
is, any unused processing time can be used to enhance the accuracy of the results.

Unfortunately, the convergence behavior often cannot be proved, so these algorithms
require schedulers that do not depend upon any specific error behavior functions.

5.2.2 Monte Carlo Decision Algorithms

Monte Carlo decision algorithms can be distinguished from general Monte Carlo ap-
proximation algorithms in that they seek to arrive at a decision, not an increasingly precise
approximation. Like the approximations, the decisions have a probability of correctness
associated with them.

Monte Carlo decision algorithms always output a solution and have stable execution
times, but make mistakes with probability p. The mistakes are often undetectable, but
as with most probabilistic algorithms, the probability of an incorrect computation can be
diminished arbitrarily by repeating the algorithm several times.

As an example consider the well-known Solovay-Strassen algorithm [Solovay and Strassen
77] for primality testing. In this algorithm, a witness is sought that probabilistically con-
firms the primality of the input number, and this witness can be found in polynomial time.
All prime numbers, as well as some very small percentage of composite numbers, have such
primality witnesses. The appearance of a primality witness for a composite number is re-
ferred to as a false witness since it falsely proclaims the composite number to be prime.
When a primality witness is found the number can be assumed to be prime with high prob-
ability, but since some composite numbers have false witnesses, there is some small chance
that the output is in error. Thus the algorithm quickly determines the primality of the
number and errs with some fixed probability p.

C-26

The applicability of Monte Carlo decision algorithms to soft-accuracy approaches lies
in our ability to calculate the probability of an incorrect computation. This probability of
error can be diminished by repeated computations, which allows us to tailor the accuracy
of the solution to the demands of the application. At design time, the algorithms can be
allocated sufficient processor time to ensure acceptable probabilities of correct solutions.
Once again, if additional processor time becomes available at run time, it can be utilized
to produce a solution with a higher probability of correctness.

As an example of how “incorrect” solutions might be tolerable in a real-time system,
suppose that a Monte Carlo decision algorithm is being used to distinguish targets from
decoys. If a few decoys slip through the system as targets, then some weapons may be
wasted, but catastrophic failure does not become imminent.

5.2.3 Las Vegas Algorithms

Las Vegas algorithms never return an incorrect answer, but the amount of time they
take to arrive at a solution may be unbounded. That is, they sometimes never arrive at
a solution, although the probability of arriving at a solution increases monotonically with
computation time.

A simple example of this type of algorithm is choosing a leader on a token ring network.
In this problem, n processors are tied to a communication network in the form of a one-way
ring so that messages take exactly n — 1 time units to reach all processors. The problem
is for the processors to unanimously decide upon a leader. It should be noted that this
problem has no deterministic solution if all processors run the same algorithm and start in
the same initial state.

The Las Vegas solution runs in rounds. In the initial round all processors are in. In
each successive round the in processors draw lots and the losers become out. Eventually
only the leader remains in and the algorithm terminates. A round consists of two phases,
a roulette phase and an evaluation phase. In the roulette phase all in processors randomly
choose between the bits 0 and 1. All processors that chose 0 are then out, and all processors
that chose 1 remain in. In the evaluation phase, all in processors put a message out on the
ring and wait. If no messages appear on the ring (it takes exactly n — 1 time units for each
processor to determine this), then all the out processors from that round are reinstated and
that round is repeated. The leader is chosen when a round is reached with exactly one in
processor remaining, and hence one message on the ring.

Las Vegas algorithms can be used as primary tasks in the backup approximation method.
If the algorithm is successful, a precise solution is produced before the alternate task must

C-27

run. The probability distribution for attaining a solution with time can generally be calcu-
lated for Las Vegas algorithms. This predictability makes it possible for tradeoffs between
time and accuracy to be made at both design time and run time. At design time, enough
time can be dedicated to a Las Vegas algorithm so that the probability of attaining a solution
is acceptable. If more time can be allocated to the algorithm at run time, the probability
of attaining a solution can be increased.

5.3 PARTIAL QUERY COMPUTATIONS

Soft-accuracy approaches are useful for distributed databases that must operate in real-
time situations, where communications delays, failing nodes, and wide distribution of data
make it difficult to meet hard deadlines. Traditional databases work in an all-or-nothing
manner. That is, a query cannot be answered unless all information is available. Davidson
and Watters [Davidson and Watters 88), and Smith and Liu [Smith and Liu 89)] outline
techniques that yield inexact solutions to relational queries given partial information. A
refinement of the technique using an object-oriented approach is found in [Vrbsky 89)].

The systems yield a series of approximations Rj, Ry, ... that converge to the exact so-
lution R. Each approximation in the series is a refinement of the previous approximation
computed from previously unavailable information. The approximations R; represent com-
plete and consistent approximations of R. They are complete in that no tuple in R is left
out of any approximation R;, and consistent in that it is possible to compute from any R;
tuples that are not in K. The approximation is exact when no membership uncertainty
exists for any tuple.

6. SUMMARY

This paper introduces the concept of soft accuracy as an approach for addressing hard
real-time scheduling without resorting to excessive overbuild. Soft-accuracy is presented as
a natural extension of the “softening” concept used in other approaches such as softened uti-
lization under rate monotonic scheduling, and soft-deadline approaches. The soft-accuracy
approach allows both robust overload performance and lean hardware requirements. It is
argued that these characteristics are well suited for SDS applications. Two methods utiliz-
ing soft accuracy are presented, and examples of application areas where soft accuracy is
applicable are given.

Of the two methods presented, the imprecise computation scheduling algorithms pro-
vide the most depth. The problems of scheduling both periodic and general deadline driven
systems on uaiprocessor and multiprocessor systems are explored. Periodic systems are

C-28

further refined by the cumulative or non-cumulative effect that errors have on the system.
Algorithms are presented that run in times ranging from O(n log n) to O(n®) for a variety of
scheduling situations. Finally, examples of application areas amenable to the soft-accuracy
approach are presented. These include problems solvable by accumulation algorithms, parti-
tioning algorithms, and probabilistic algorithms, and Partial Query evaluations in relational
databases.

References

[Blazewicz and Finke 87] Blazewicz, J. and G. Finke, “Minimizing Mean Weighted Execu-
tion Time Loss on Identical and Uniform Processors,” Information Processing
Letters 24, March 1987, 259-263.

[Chung 90] Chung,J.Y.,J. W.S. Liu, and K. J. Lin, “Scheduling Periodic Jobs that Allow
Imprecise Results,” to appear in IEEE Transactions on Computers.

{Davidson and Watters 89] Davidson, S. B. and A. Watters, “Partial Computation in Real-
Time Database Systems,” Proceedings of the Fifth ILEE Workshop on Real-
Time Operating Systems and Software, Washington, D.C., May 12-13, 1988,
117-121.

[Ford and Fulkerson 62] Ford, Jr., L. R. and D. R. Fulkerson, Flows in Networks, Princeton
University Press, 1962.

[Gear 88] Gear, C. W., K. J. Lin, C. L. Liu, and J. W. S. Liu, “Algorithmic Aspects of
Real-Time Computing,” Kickoff Workshop of ONR Foundations of Real-Time
Computing Research Initiative, Falls Church, VA, November 1988, 17-22.

[Johnson 73] Johnson, D. S., Near Optimal Bin Packing Algorithms, Technical Report MAC
TR-109, Project MAC, MIT, Cambridge, MA, 1973.

[Karp and Rabin 87] Karp, R. M. and M. O. Rabin. “Efficient Randomized Pattern-
Matching Algorithms,” IBM Journal of Research and Development 31,2 (March
1987).

[Lawler and Moore 69] Lawler, E. L. and J. M. Moore, “A Functional Equation and its
Applications to Resource Allocation and Scheduling Problems,” Management
Science 16, 1969, 77-84.

[Leung 89] Leung,J.Y.T., “A New Algorithm for Periodic Real-Time Tasks,” Algorithmica
4, 1989, 209-219.

[Liestman and Campbell 80] Liestman, A. L. and R. H. Campbell, A Fault-Tolerant
Scheduling Problem, Report No. UITUCDCS-R-80-1010, Dept. of Computer Sci-
ence, University of Illinois, Urbana, IL, 1980.

[Liestman and Campbell 86] Liestman, A. L. and R. H. Campbell, “A Fault-Tolerant
Scheduling Problem,” IEEE Transactions on Software Engineering SE-12, 11
(November 1986), 1089-1095.

C-29

[Liu 89) Liu, J. W. S,, K. J. Lin, C. L. Liu, and C. W. Gear, "Research on Imprecise
Computations in Project QuartZ,” 1989 Workshop on Operating Systems for
Mission Critical Computing, College Park, MD, September 1989.

[Liu and Layland 73] Liu, C. L. and J. W. Layland, “Scheduling Algorithms for Multipro-
cessing in a Hard Real-Time Environment,” Journal of the ACM 20, 1 (January
1973), 46-61.

[McNaughton 59] McNaughton, R., “Scheduling With Deadlines and Loss Functions,” Man-
agement Science 12, 1959, 1-12.

[Shih 89a] Shih, W. K., J. W. S. Liu, J. Y. Chung, and D. W. Gillies, “Scheduling Tasks
with Ready Times and Deadlines to Minimize Average Error,” ACM Operating
Systems Review 23, 3 (July 1989), 14-28.

[Shih 89b] Shih, W. K., J. W. S. Liu, and J. Y. Chung, Fast Algorithms for Scheduling
Imprecise Computations with Timing Constraints, Report No. UIUCDCS-R-
89-1506, Dept. of Computer Science, University of lllinois, Urbana, IL, May
1989.

[Smith and Liu 89) Smith, K. P. and J. W. S. Liu, “Monotonically Improving Approximate
Answers to Relational Algebra Queries,” Proceedings of IEEE COMPSAC, Or-
lando, FL, September 1989.

[Solovay and Strassen 77] Solovay, R. and V. Strassen, “A Fast Monte-Carlo Test for Pri-
mality,” SIAM Journal of Computing 6, 1 (March 1977), 84-85.

[Vrbsky 89] Vrbsky, S. V., J. W. S. Liu, and K. P. Smith, “An Object Oriented Data
Model for Monotone Approximate Query Processing,” Department of Computer
Science, University of Lllinois, Urbana, IL, 1989.

C-30

APPENDIXD

SCHEDULING APERIODIC TASKS WITH HARD DEADLINES
IN A RATE MONOTONIC FRAMEWORK!

ABSTRACT

It has been suggested [Sha 86] that an aperiodic task with hard deadlines can be
accommodated by the rate monotonic scheduling algorithm in the following way: first,
assume some minimal separation time between arrivals of the task; then, treat the task as
if it were a periodic task with a period equal to the minimal separation time.

Two phenomena must be considered when an aperiodic task is handled in this
way: multi-arrival periods and interperiod gaps. Multi-arrival periods are periods in
which two or more aperiodic arrivals occur. They arise whenever actual interarrival times
can be less than the assumed minimal separation time. In a multi-arrival period, all arri-
vals except the one that initiates the period are ignored, or rejected, by the rate mono-
tonic scheduling algorithm. Interperiod gaps are the time intervals between the end of
one period and the subsequent arrival of the aperiodic task, which initiates the next
period. During these gaps, the rate monotonic algorithm has reserved processor capacity
for the aperiodic task, but none is used. Thus, interperiod gaps can lead to low average
processor utilization, or system “overbuild.”

In this paper, we analyze these two phenomena for the case in which the
aperiodic task has a Poisson arrival process. We derive analytic expressions for: (1) the
probability of a period experiencing multiple arrivals, as a function of the assumed mini-
mal separation time, and (2) the percentage of time represented by interperiod gaps, also
as a function of the minimal separation time. These results quantify the degree to which
multi-arrival periods become more of a problem and interperiod gaps become less of a
problem as the assumed minimal separation time increases.

1. RATE MONOTONIC SCHEDULING ALGORITHM

Let us consider a set of m periodic tasks, ,, ..., 7w, With task 7; having periods (or
constant interarrival times) of T; and computation requirements of C;,i =1, ..., m. Each
arrival of task r; initiates a period of length T; time units, during which it must receive C;
time units of computation. The end of the period represents the “hard deadline” of the
arrival that initiated the period. It also coincides with the occurrence of the next arrival,
which marks the beginning of the next period. Since task 7; requires C; time units of com-
putation every 7; time units, its utilization of the processor is C;/T;. 2

1. This paper appeared in Proceedings of the Sixth IEEE Workshop on Real-Time Operating Systems and
Sofitware, May 1989, 1-5. The co-suthors were Karen D. Gordon of IDA, Lawrence W. Dowdy of
Vanderbilt University, James Baldo, Jr., of IDA, and Kevin J. Rappoport of IDA.

2. Our notation is based on the notation in [Liu and Layland 73).

D-1

The rate monotonic algorithm is an optimal preemptive, static-priority-driven
uniprocessor scheduling algorithm for periodic tasks with hard deadlines as defined
above.? As a preemptive, priority-driven algorithm, it ensures that the processor is always
executing the highest priority task in the processor ready queue (unless of course the
queue is empty, in which case the processor is idle). If a task of higher priority than the
currently executing task joins the queue, then the currently executing task is preempted,
and the processor begins executing the newly arrived (higher priority) task.

As a static algorithm, the rate monotonic algorithm assigns priorities that are
determined prior to execution and remain fixed over time. In particular, it assigns (static)
priorities to tasks according to the lengths of their periods: tasks with shorter periods are
assigned higher priorities. Alternatively stated, tasks with higher arrival rates are
assigned higher priorities, making task priority a monotonically increasing function of
task arrival rate; hence the term “rate monotonic.”

The rate monotonic algorithm was shown to be optimal within the class of pre-
emptive, static-priority-driven scheduling algorithms by Liu and Layland [Liu and Lay-
land 73]. This means that no other algorithm of this class can schedule a set of periodic
tasks thet cannot also be scheduled by the rate monotonic algorithm. In addition to
establishing optimality, Liu and Layland established a sufficient condition for the schedu-
lability of an arbitrary task set. The condition is that the total processor utilization U of
the task set is no more thanin2,i.e.,

U= 3 (G/T;) <In2(=0.693)
i=l
Thus, for any task set of any size whose total processor utilization is less than or equal to
In 2, the rate monotonic algorithm guarantees that all deadlines of the task set will be met.
Under more restrictive conditions, the total utilization can be higher.

The rate monotonic algorithm is appealing because of its low overhead, effi-
ciency, predictability, and extensibility. It is low-overhead in the sense that priority assign-
ments are static; in other words, it is low-overhead relative to dynamic algorithms. Tt is -
efficient in two senses. First, it is optimal with respect to the class of static algorithms.
Second, it is viewed as being competitive with respect to the class of dynamic algorithms.
That is, the “overbuild” required to achieve a processor utilization of no more than In 2 is
generally regarded as being “acceptable.” Finally, it is predictable in the sense that
(under the specified conditions) deadlines are guaranteed to be met a priori. The need
for exhaustive testing is eliminated.

3. The earliest deadline and least slack time algorithms are optimal preemptive, dynamic-priority-driven
scheduling algorithms [Liu and Layland 73] [Mok 83). P priority-d

D-2

Perhaps the most important feature of the rate monotonic algorithm is its “exten-
sibility.” It has proven to be amenable to a number of extensions beyond traditional peri-
odic task scheduling. For example, extensions have been developed for dealing with
transient overload [Sha 87], task synchronization [Rajkumar 88] [Sha 88], and aperiodic
tasks.

In regard to aperiodic tasks, several algorithms for accommodating aperiodic
tasks without hard deadlines in a rate monotonic framework have been developed
[Lehoczky 87] [Sha 87] [Sprung 88]. These algorithms seek to reduce average response
times of aperiodic tasks while still guaranteeing hard deadlines of periodic tasks.

2. EXTENSION FOR ACCOMMODATING APERIODIC TASKS
WITH HARD DEADLINES

Now let us focus on aperiodic tasks with hard deadlines. The following approach

has been proposed for accommodating this class of tasks in a rate monotonic framework
[Sha 86]:

a. For aperiodic task 7;, assume some minimal separation time L, between arri-
vals of the task.

b. Treat task 7, as if it were periodic with a period of length L,. That is, assign
task 7, a priority based on L;, according to the rate monotonic priority assign-
ment algorithm.

Clearly, the minimal separation time L, is a critical parameter in this approach.
In some cases, physical conditions may dictate a value for L, but, in general, the choice
of a value for L, is not so straightforward. For example, if the aperiodic task has a Pois-
son arrival process, then arrivals can occur at arbitrarily close time instants. For any
chosen value of L, (> 0), there is some probability of encountering interarrival times of a
still lower value. On one hand, the value of L, must be low enough to make this probabil-
ity tolerable. On the other hand, the value of L; must not be too low, or an intolerable
level of excess processor capacity will be dedicated to 7.

2.1 DISCUSSION

The interarrival times of an aperiodic task are, by definition, variable. This vari-
ability leads to two phenomena: multi-arrival periods and interperiod gaps. The choice
of L, determines the relative prevalence of these two phenomena. As suggested above,
both have undesirable consequences, which threaten certain key features of the rate
monotonic scheduling algorithm, namely predictability and efficiency. These conse-
quences are explained below.

D-3

——]

o
2.1.1 Multi-Arrival Periods
Let us consider the impact of multi-arrival periods. Given that task 7, has com- ®

putation requirement C;, the rate monotonic scheduling algorithm, in effect, reserves a

processor utilization of U, = C;/L; for task r,. To maintain predictability in the form of

guaranteed deadlines for all tasks in the task set, task 7, must not exceed this allocated

utilization. Thus, one and only one arrival can be scheduled in any given period. If multi-

ple arrivals do occur within a period, all except the one that initiates the period are ®
rejected. Clearly, rejected arrivals miss their deadlines, since they receive no service at

all. These rejected arrivals should be taken into account during the process of selecting a

value for L,.

2.1.2 Interperiod Gaps ®

Now, consider the impact of interperiod gaps. The beginning of a period no
longer coincides with the ending of the preceding period, but instead occurs some time
later. Thus, periods of task r, become separated by intervals of time during which the
next arrival of task 7, is being awaited. These intervals represent “idle” time, with ®
respect to task 7,; the rate monotonic algorithm has reserved processor capacity (of
Ci/Ly;) for 7, but none is used. This dedicated but unused processor capacity should also
be taken into account during the process of selecting a value for L,.

2.2 ANALYSIS ®

Let us assume that task r has a Poisson arrival process with arrival rate).4 Then,
arrivals of task r have exponentially distributed interarrival times with a mean of 1/).
That is, if T is a random variable representing inteiarrival time, the cumulative distribu-
tion function of T is ®

Fr(t)=P(T<t)=1~e~>
The following results are derived on the basis of this assumption.®
2.2.1 Multi-Arrival Periods ®

For task r with Poisson arrival process of rate), the probability of a period having
multiple arrivals is simply the probability that the arrival following the initial une occurs
prior to the lapse of the minimal separation time L. Denote this probability by M, ;.
Then, from the formula for the cumulative distribution of the exponential distribution,® ®

4. For the sake of clarity, we now drop the subscript indicating task number.

5. The reader is referred to [Kleinrock 75] for a review of the Poisson process and the exponential
distribution.

My =P(T<L)=1-¢~

Suppose that we wish to achieve a specified value of M, ;, say M, (e.g., 10%,
1%, etc.). We can do so by solving the above equation for L, setting M, ; to M,, and
assigning the resulting value to L as follows:

L=-%In(1—Mo)

2.2.2 Interperiod Gaps

Here, we are interested in the fraction of time represented by interperiod gaps.
Denote this fraction by I . If the mean length of interperiod gaps is denoted by G, 1,
then I, , can be written as follows:

L, = Gy
x'l'-.Gx,l,'l'L

Now, the problem is to derive G, ;.

In other words, we want to derive the mean time from the end of a period to the
next arrival of the task. By virtue of the memoryless property of the exponential distribu-
tion [Kleinrock 75, p. 66], the mean time from the end of a period to the next arrival is
independent of how much time has passed since the previous arrival. So, the mean time
from the end of a period to the next arrival is simply equal to the mean interarrival time
1/x. Thatis,

1
GyL= X

Therefore, I, . is given by the following equation:

1

L=
: 1

ST+L

Again, we can solve for L to obtain the value of L necessary to achieve a specified

level of I, ., say I, as follows:

T1-1)

L= A

6. Note that since T is a continuous random varisble, P(T < L) = P(T< L).

D-5

Finally, we can calculate the “excess” processor capacity E,, ; dedicated to task
7. We do so by recognizing that during interperiod gaps, the rate monotonic algorithm still
reserves a processor utilization of C/L for task r. We obtain the following result:

E,.=(C/L)I,,L

E,, . represents the cost, in terms of efficiency, of maintaining predictability, in the form
of guaranteed deadlines.

In Figure 1, both M, , and I, are plotted as functions of L.

My L

+- L
72

Figure 1. Tradeoff Between Multi-Arrival Periods and Interperiod Gaps

3. CONCLUDING REMARKS

As shown Figure 1, “desirable’” (namely, low) values of M,, ; (the probability of a
period having multiple arrivals) occur at low values of the assumed minimal separation
time L, whereas ‘“desirable” (again, low) values of I, , (the fraction of time represented
by interperiod gaps) occur at high values of L.” Herein lies the tradeoff that must be con-
sidered when selecting a value for the minimal separation time L. If tolerable values of
both M, . and I, . cannot be attained at the same time (i.e., at the same value of L),
then an alternative scheduling approach must be considered.

7. The intersection of the curves lies at approximately 0.8 (1/)).

D-6

REFERENCES

[Kleinrock 75] Kleinrock, L., Queueing Systems, Volume 1: Theory, John Wiley & Sons,
Inc., 1975.

[Lehoczky 87]) Lehoczky, J.P., L. Sha, and J.K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” IEEE Real-Time Systems
Symposium, December 1987.

[Liu and Layland 73] Liu, C.L. and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” Journal of the ACM 20, 1 (Janu-
ary 1973), 46-61.

[Mok 83] Mok, A.K., Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment, Ph.D. Thesis, Department of Electrical Engineering
and Computer Science, M.L.T., 1983.

[Rajkumar 88] Rajkumar, R., L. Sha, and J.P. Lehoczky, “Real-Time Synchronization
Protocols for Multiprocessors,” IEEE Real-Time Systems Symposium, December
1988.

[Sha 86] Sha, L., J.P. Lehoczky, R. Rajkumar, “Solutions for Some Practical Practical
Problems in Prioritized Preemptive Scheduling,”” IEEE Real-Time Systems Sym-
posium, December 1986.

[Sha 87] Sha, L., J.P. Lehoczky, and R. Rajkumar, “Task Scheduling In Distributed
Real-Time Systems,” Proceedings of IEEE Industrial Electronics Conference,
1987.

[Sha 88] Sha, L., R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” Departments of CS, ECE, and Statis-
tics, Carnegie Mellon University, 23 May 1988.

[Sprung 88] Sprung, B., J.P. Lehoczky, and L. Sha, “Exploiting Unused Periodic Time
for Aperiodic Service Using the Extended Priority Exchange Algorithm,” IEEE
Real-Time Systems Symposium, December 1988.

D-7

Distribution List for IDA Paper P-2422
NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Lt Col James Sweeder 2
Chief, Computer Resources
Engineering Division
SDIO/ENA
The Pentagon, Room 1E149
Washington. D.C. 20301-7100

Other

Dr. Ashok Agrawala 1
Department of Computer Science

University of Maryland

College Park, MD 20742

Dr. Jon Agre 1
Science Center

Rockwell International Corporation

Mail Stop A24

1049 Camino Dos Rios

Thousand Oaks, CA 91360

Dr. Dan Alpert, Director 1
Program in Science, Technology & Society

University of Illinois

Room 201

912-1/2 West Lllinois Street

Urbana, I1. 61801

Mr. Rich Bergman 1
Naval Ocean Systems Center
San Diego, CA 92152-5000

Dr. Barry W. Boehm 1
Director, DARPA/SISTO

3701 North Fairfax Drive

Arlington, VA 22203-1714

LtCol Brian Boesch 1
DARPA/CSTO

3701 North Fairfax Drive

Arlington, VA 22203-1714

Distribution List-1

NAME AND ADDRESS

Mr. Dale Brouhard
Naval Ocean Systems Center
San Diego, CA 92152-5000

Ms. Virginia L. Castor

Special Assistant for Software and
Computer Technology

ODDDRE(R&AT)

Room 3E114, Pentagon

Washington, DC 20301-3080

Dr. David R. Cheriton
Computer Science Department
Bldg. 460, Room 422

Stanford University

Stanford, CA 94305-6110

Mr. William M. Corwin

Intel Corp. HF3-64

5200 NE Elam Young Parkway
Hillsboro, OR 97124

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dr. Larry Dowdy
Computer Science Department

Vanderbilt University
P.O. Box 1679, Station B
Nashville, TN 37235

Mr. Walt Heimerdinger
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Ms. Connie Heitmeyer
Code 5534

Naval Research Lab

4555 Overlook Avenue, SW
Washington, DC 20375

Mr. Steve Howell

NSWC - White Oak

10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

NUMBER OF COPIES
1

Distribution List-2

NAME AND ADDRESS

Mr. Phil Hwang

NSWC - White Oak

Code U-33

10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

Mr. Richard iff

SDIO ENA

Room 1E149, The Pentagon
Washington, D.C. 20301

Mr. D.P. Juttelstad

Naval Underwater Systems Center
Newport Laboratory

Newport, RT 02841

Dr. Virginia P. Kobler

US Army Strategic Defense Command
P.O. Box 1500

Huntsville, AL 35807-3801

Dr. Gary M. Koob

Computer Science Division, Code 1133
Office of Naval Research

800 N. Quincy Street

Arlington, VA 22217-5000

Dr. John F. Kramer
STARS Technology Center
3701 North Fairfax Drive
Arlington, VA 22204-1714

Mr. Tom Lawrence

Rome Laboratory
RL/COAC

Griffis AFB, NY 13441-5700

Dr. John P. Lehoczky
Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Charles Lillie
SAIC

1710 Goodridge Drive
P.O. Box 1303
McLean, VA 22102

NUMBER OF COPIES

1

Distribution List-3

NAME AND ADDRESS NUMBER OF COPIES

Mr. J. Oblinger 1
Naval Underwater Systems Center

Newport Laboratory

Newport, RI 02841

Mr. Frank Prindle 1

Naval Air Development Center
Warminster, PA 18974

LTC Mark Pullen 1
DARPA/ASTO

3701 North Fairfax Drive

Arlington, VA 22203-1714

Dr. Richard F. Rashid 1
Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Mr. Helmut Roth 1
NSWC - White Oak

10901 New Hampshire Avenue

Silver Spring, MD 20903-5000

CDR(Sel) Greg Sawyer 1
SPAWAR 231-2B2

Space and Naval Warfare Systems Command
Washington, DC 20363-5100

Dr. John Salasin 1
Software Engineering Institute and
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dr. William Scherlis 1
DARPA/SISTO

3701 North Fairfax Drive

Arlington, VA 22203-1714

SDIO Technical Information Center 1
DRC

1755 Jeff Davis Highway

Suite 802

Crystal Square 5

Arlington, VA 22202

Distribution List-5

NAME AND ADDRESS

Mr. J. Oblinger

Naval Underwater Systems Center
Newport Laboratory

Newport, RI 02841

Mr. Frank Prindle
Naval Air Development Center
Warminster, PA 18974

LTC Mark Pullen
DARPA/ASTO

3701 North Fairfax Drive
Arlington, VA 22203-1714

Dr. Richard F. Rashid
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Mr. Helmut Roth

NSWC - White Oak

10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

CDR(Sel) Greg Sawyer
SPAWAR 231-2B2

Space and Naval Warfare Systems Command

Washington, DC 20363-5100

Dr. John Salasin

Software Engineering Institute and
School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Dr. William Scherlis
DARPA/SISTO

3701 North Fairfax Drive
Arlington, VA 22203-1714

SDIO Technical Information Center
DRC

1755 Jeff Davis Highway

Suite 802

Crystal Square 5
Arlington, VA 22202

Distribution List-5

NUMBER OF COPIES

NAME AND ADDRESS NUMBER OF COPIES

LCDR Robert Voigt 1
SPAWAR 231-2B1

Space and Naval Warfare Systems Command
Washington, DC 20363-5100

Dr. Ralph Wachter 1
ONR (Code 1133)

800 N. Quincy Street

Arlington, VA 22217-5000

Ms. Elizabeth Wald 1
Code 5150

Naval Research Laboratory

4555 Overlook Avenue, SW

Washington, DC 20375-5000

Mr. Paul Wallenberger 1
NSWC - White Oak

10901 New Hampshire Avenue

Silver Spring, MD 20903-5000

IDA

General Larry D. Welch, HQ
Mr. Philip L. Major, HQ

Dr. Robert E. Roberts, HQ

Ms. Ruth L. Greenstein, HQ

Mr. James Baldo, CSED

Ms. Anne Douville, CSED

Mr. Stephen Edwards

Dr. Dennis W. Fife, CSED

Dr. Karen D. Gordon, CSED
Dr. Richard J. Ivanetich, CSED
Mr. Terry Mayfield, CSED

Dr. Reginald N. Meeson, CSED
Ms. Katydean Price, CSED

Ms. Beth Springsteen, CSED

Dr. Richard L. Wexelblat, CSED
Mr. David Wheeler, CSED

Mr. Kevin J. Rappoport, SRC
IDA Control & Distribution Vault

A N N e N T

Distribution List-7

